This is the sixth part of my VCAP7-DTM Design exam series. In part 5 I covered the creation of a physical design for horizon storage. This time we take a look at section 5 of the blueprint, the creation of a physical network design for Horizon:
Section 5 – Create a Physical Design for Horizon Networking
Objective 5.1 – Plan and Design Network Requirements for Horizon solutions (including Mirage and Workspace One)
Objective 5.2 – Design Network and Security Components Based on Capacity and Availability Requirements
Objective 5.3 – Evaluate GPO and Display Protocol Tuning Options Based on Bandwidth and Connection Limits
Networking is also a very important and exciting when creating a Horizon architecture and a lot of questions are coming up when I think about Horizon and network access and devices:
- How does the ISP infrastructure look like?
- Do we have redundant internet uplinks?
- Bandwidth in the data center?
- Firewalls?
- Remote connections?
- How is the connection between Horizon client and agent?
- ESXi host network interfaces?
- Do we have mobile workers using WLAN?
I once had a customer who had a really nice and modern data center infrastructure, but their firewalls didn’t provide enough throughput. Make your homework and know how the routing and switching looks like and check every component’s limit.
Beside our VDI traffic, what about management, vMotion and vSAN traffic? Do we have enough network interfaces and bandwidth? If you think about management traffic, then 1Gbit interfaces are normally sufficient. But vMotion and vSAN traffic should have redundant 10Gbit connections and be on different subnets/VLANs.
Overview of the Network Architecture
In most network architectures two firewalls exist to create the DMZ.
The Unified Access Gateway (UAG) appliances are placed in the DMZ. UAG can perform authentication or pass a connection to the Connection Server for AD authentication.
Notauthenticated sessions are dropped at the Unified Access Gateway appliance and only authenticated sessions are allowed to connect to the internal resources.
UAG appliances in the DMZ communicate with the Connection Server instances inside the corporate firewalls and ensure that only the desired remote apps and desktop sessions can enter the corporate data center on behalf of this strongly authenticated user.
Inside the corporate firewall you install and configure at least two Connection Server instances. Their configuration data is stored in an embedded LDAP directory (AD LDS) and is replicated among all members of the group.
Firewall Ports
On March 22, 2016, an updated network ports diagram has been posted by VMware:
On Tech Zone this diagram and all key firewall considerations are available for Horizon 7: https://techzone.vmware.com/resource/network-ports-vmware-horizon-7
Network Bandwidth Considerations
The used session bandwidth between the Horizon client and agent depends highly on the session configuration. For display traffic, many elements can affect network bandwidth, such as the used protocol, monitor resolution, frames per second, graphically intense applications or videos, image and video quality settings.
Because the effects of each configuration can vary widely, it’s recommended to monitor the session bandwidth consumption as part of a pilot. Try to figure out the bandwidth requirements for each use case.
Display Protocol
I would say that Blast Extreme is the way to go, because it has been optimized for mobile devices and can intelligently switch between UDP and TCP (Adaptive Transport). PCoIP has been developed by Teradici, but Blast is VMware’s own creation and that’s why I think that Blast will be “the future” and that RDP still can be used as fallback for some special scenarios.
Display Protocol Tuning Options
I will not cover this topic and explain you how you can configure the maximum bandwidth for PCoIP via GPO. There are several options to decrease and increase the used session bandwidth:
Configuring PCoIP session variables
VMware Blast Policy Settings
WAN Consideration
Nowadays, every client device is connected with 1Gbps. LAN connections and the user experience are most of the time perfect. How is it with WAN connections where you will have latencies that could be between 50 and 200ms? Do you apply Quality of Services (Qos) policies to prioritize Horizon traffic?
WAN optimization is one of the keywords when talking about WAN connections and is valuable for TCP-based protocols which require many handshakes between client and server, such as RDP.
PCoIP is UDP-based and this was the reason why everyone in the past said, that you should prefer this protocol for connections with higher latencies and then no WAN optimization or acceleration would be needed.
Then inside the corporate network you would use RDP because your network is stable or did you leave this choice to the user?
With Blast Extreme, Adaptive Transport will automatically detect higher latencies and automatically switches between TCP and UDP if needed. Higher latencies could also occur with mobile devices working of WiFi networks.
In my opinion there are almost no reasons anymore to use anything else than Blast because it’s also more network efficient than PCoIP.
Conclusion
Use separate networks for vSphere management, VM connectivity, vMotion and vSAN traffic. Make sure you have redundancy across different physical adapters (NIC, PCI slot) and devices (switches, router, firewall). Consider the use of a vSphere Distributed Switch (vDS) to reduce management overhead and provide a richer feature set. Maybe NSX could be interesting for micro segmentation.
Load balancing is a very important component of a Horizon architecture. The primary purpose of load balancing is to optimize performance by evenly distributing client sessions across all available Connection Server instances. The same is valid for UAG appliances, Identity Manager or App Volumes Manager. NSX comes with a virtual load balancer, but F5 and NetScaler are also fine.
Depending on your customer’s requirements and needs, the network design is another key part to remove single point of failures.
In part 7 we will figure out how we have to design Horizon desktops and pools.