Momentum in the Cloud: Crafting Your Winning Strategy with VMware Cloud

Momentum in the Cloud: Crafting Your Winning Strategy with VMware Cloud

The time is right for VMware Cloud! In the rapidly evolving landscape of modern business, embracing the cloud has become essential for organizations seeking to stay competitive and agile. The allure of increased scalability, cost-efficiency, and flexibility has driven enterprises of all sizes to embark on cloud migration journeys. However, the road to a successful cloud adoption is often coming with challenges. Slow and failed migrations have given rise to what experts call the “cloud paradox,” where the very technology meant to accelerate progress ends up hindering it.

As businesses navigate through this paradox, finding the right strategy to harness the full potential of the cloud becomes paramount. One solution that has emerged as a beacon of hope in this complex landscape is VMware Cloud. With its multi-cloud approach, which is also known as supercloud, VMware Cloud provides organizations the ability to craft a winning strategy that capitalizes on momentum while minimizing the risks associated with cloud migrations.

The Experimental Phase is Over

Is it really though? The experimental phase was an exciting journey of discovery for organizations seeking the potential of multi-cloud environments. Companies have explored different cloud providers, tested a variety of cloud services, and experimented with workloads and applications in the cloud. It allowed them to understand the benefits and drawbacks of each cloud platform, assess performance, security and compliance aspects, and determine how well each cloud provider aligns with their unique business needs.

The Paradox of Cloud and Choice

With an abundance of cloud service providers, each offering distinct features and capabilities, decision-makers can find themselves overwhelmed with options. The quest to optimize workloads across multiple clouds can lead to unintended complexities, such as increased operational overhead, inconsistent management practices/tools, and potential vendor lock-in.

Furthermore, managing data and applications distributed across various cloud environments can create challenges related to security, compliance, and data sovereignty. The lack of standardized practices and tools in a multi-cloud setup can also hinder collaboration and agility, negating the very advantages that public cloud environments promise to deliver.

Multi-Cloud Complexity

(Public) Cloud computing is often preached for its cost-efficiency, enabling businesses to pay for resources on-demand and avoid capital expenditures on physical infrastructure. However, the cloud paradox reveals that organizations can inadvertently accumulate hidden costs, such as data egress fees, storage overage charges, and the cost of cloud management tools. Without careful planning and oversight, the cloud’s financial benefits might be offset by unexpected expenses.

Why Cloud Migrations are Slowing Down

Failed expectations. The first reasons my customers mention are cost and complexity.

While the cloud offers potential cost savings in the long run, the initial investment and perceived uncertainty in calculating the total cost of ownership can deter some organizations from moving forward with cloud migrations. Budget constraints and difficulties in accurately estimating and analyzing cloud expenses lead to a cautious approach to cloud adoption.

One significant factor impeding cloud migrations is the complexity of the process itself. Moving entire infrastructures, applications, and data to the cloud requires thorough planning, precise execution, and in-depth knowledge of cloud platforms and technologies. Many organizations lack the in-house expertise to handle such a massive undertaking, leading to delays and apprehensions about potential risks.

Other underestimated reasons are legacy systems and applications that have been in use for many years and are often deeply ingrained within an organization’s operations. Migrating these systems to the cloud may require extensive reconfiguration or complete redevelopment, making the migration process both time-consuming and resource-intensive.

Reverse Cloud Migrations

While I don’t advertise a case for repatriation, I would like to share the idea that companies should think about workload mobility, application portability, and repatriation upfront. You can infinitely optimize your cloud spend, but if cloud costs start to outpace your transformation plans or revenue growth, it is too late already.

Embracing a Smart Approach with VMware Cloud

To address the cloud paradox and maximize the potential of multi-cloud environments, VMware is embracing the cloud-smart approach. This approach is designed to empower organizations with a unified and consistent platform to manage and operate their applications across multiple clouds.

VMware Cloud-Smart

  • Single Cloud Operating Model: A single operating model that spans private and public clouds. This consistency simplifies cloud management, enabling seamless workload migration and minimizing the complexities associated with multiple cloud providers.
  • Flexible Cloud Choice: VMware allows organizations to choose the cloud provider that best suits their specific needs, whether it is a public cloud or a private cloud infrastructure. This freedom of choice ensures that businesses can leverage the unique advantages of each cloud while maintaining operational consistency.
  • Streamlined Application Management: A cloud-smart approach centralizes application management, making it easier to deploy, secure, and monitor applications across multi-cloud environments. This streamlines processes, enhances collaboration, and improves operational efficiency.
  • Enhanced Security and Compliance: By adopting VMware’s security solutions, businesses can implement consistent security policies across all clouds, ensuring data protection and compliance adherence regardless of the cloud provider.

Why VMware Cloud?

This year I realized that a lot of VMware customers came back to me because their cloud-first strategy did not work as expected. Costs exploded, migrations were failing, and their project timeline changed many times. Also, partners like Microsoft and AWS want to collaborate more with VMware, because the public cloud giants cannot deliver as expected.

Customers and public cloud providers did not see any value in lifting and shifting workloads from on-premises data centers to the public. Now the exact same people, companies and partners (AWS, Microsoft, Google, Oracle etc.) are back to ask for VMware their support, and solutions that can speed up cloud migrations while reducing risks.

This is why I am always suggesting a “lift and learn” approach, which removes pressure and reduces costs.

Organizations view the public cloud as a highly strategic platform for digital transformation. Gartner forecasted in April 2023 that Infrastructure-as-a-Service (IaaS) is going to experience the highest spending growth in 2023, followed by PaaS.

It is said that companies spend most of their money for compute, storage, and data services when using Google Cloud, AWS, and Microsoft Azure. Guess what, VMware Cloud is a perfect fit for IaaS-based workloads (instead of using AWS EC2, Google’s Compute Engine, and Azure Virtual machine instances)!

Who doesn’t like the idea of cost savings and faster cloud migrations?

Disaster Recovery and FinOps

When you migrate workloads to the cloud, you have to rethink your disaster recovery and ransomware recovery strategy. Have a look at VMware’s DRaaS (Disaster-Recovery-as-a-Service) offering which includes ransomware recovery capabilities as well. 

If you want to analyze and optimize your cloud spend, try out VMware Aria Cost powered by CloudHealth.

Final Words

VMware’s approach is not right for everyone, but it is a future-proof cloud strategy that enables organizations to adapt their cloud strategies as business needs to evolve. The cloud-smart approach offers a compelling solution, providing businesses with a unified, consistent, and flexible platform to succeed in multi-cloud environments. By embracing this approach, organizations can overcome the complexities of multi-cloud, unlock new possibilities, and set themselves on a path to cloud success.

And you still get the same access to the native public cloud services.

 

 

Supercloud – A Hybrid Multi-Cloud

Supercloud – A Hybrid Multi-Cloud

I thought it is time to finally write a piece about superclouds. Call it supercloud, the new multi-cloud, a hybrid multi-cloud, cross-cloud, or a metacloud. New terms with the same meaning. I may be biased but I am convinced that VMware is in the pole position for this new architecture and approach.

Let me also tell you this: superclouds are nothing new. Some of you believe that the idea of a supercloud is something new, something modern. Some of you may also think that cross-cloud services, workload mobility, application portability, and data gravity are new complex topics of the “modern world” that need to be discussed or solved in 2023 and beyond. Guess what, most of these challenges and ideas exist for more than 10 years already!

Cloud-First is not cool anymore

There is clear evidence that a cloud-first approach is not cool or the ideal approach anymore. Do you remember about a dozen years ago when analysts believed that local data centers are going to disappear and the IT landscape would only consist of public clouds aka hyperscalers? Have a look at this timeline:

VMware and Public Clouds Timeline

We can clearly see when public clouds like AWS, Google Cloud, and Microsoft Azure appeared on the surface. A few years later, the world realized that the future is hybrid or multi-cloud. In 2019, AWS launched “Outposts”, Microsoft made Azure Arc and their on-premises Kubernetes offering available only a few years later.

Google, AWS, and Microsoft changed their messaging from “we are the best, we are the only cloud” to “okay, the future is multi-cloud, we also have something for you now”. Consistent infrastructure and consistent operations became almost everyone’s marketing slogan.

As you can also see above, VMware announced their hybrid cloud offering “VMware Cloud on AWS” in 2016, the initial availability came a year after, and since 2018 it is generally available.

From Internet to Interclouds

Before someone coined the term “supercloud”, people were talking about the need for an “intercloud”. In 2010, Vint Cerf, the so-called “Father of the Internet” shared his opinions and predictions on the future of cloud computing. He was talking about the potential need and importance of interconnecting different clouds.

Cerf already understood about 13 years ago, that there’s a need for an intercloud because users should be able to move data/workloads from one cloud to another (e.g., from AWS to Azure to GCP). He was guessing back then that the intercloud problem could be solved around 2015.

We’re at the same point now in 2010 as we were in ’73 with internet.

In short, Vint Cerf understood that the future is multi-cloud and that interoperability standards are key.

There is also a document that also delivers proof that NIST had a working group (IEEE P2302) trying to develop “the Standard for Intercloud Interoperability and Federation (SIIF)”. This was around 2011. How did the suggestion back then look like? I found this youtube video a few years ago with the following sketch:

Intercloud 2012

Workload Mobility and Application Portability

As we can see above, VM or workload mobility was already part of this high-level architecture from the IEEE working group. I also found a paper from NIST called “Cloud Computing Standards Roadmap” dated July 2013 with very interesting sections:

Cloud platforms should make it possible to securely and efficiently move data in, out, and among cloud providers and to make it possible to port applications from one cloud platform to another. Data may be transient or persistent, structured or unstructured and may be stored in a file system, cache, relational or non-relational database. Cloud interoperability means that data can be processed by different services on different cloud systems through common specifications. Cloud portability means that data can be moved from one cloud system to another and that applications can be ported and run on different cloud systems at an acceptable cost.

Note: VMware HCX is available since 2018 and is still the easiest and probably the most cost-efficient way to migrate workloads from one cloud to another.

It is all about the money

Imagine it is March 2014, and you read the following announcement: Cisco is going big – they want to spend $1 billion on the creation of an intercloud

Yes, that really happened. Details can be found in the New York Times Archive. The New York Times even mentioned at the end of their article that “it’s clear that cloud computing has become a very big money game”.

In Cisco’s announcement, money had also been mentioned:

Of course, we believe this is going to be good for business. We expect to expand the addressable cloud market for Cisco and our partners from $22Bn to $88Bn between 2013-2017.

In 2016, Cisco retired their intercloud offering, because AWS and Microsoft were, and still are, very dominant. AWS posted $12.2 billion in sales for 2016, Microsoft ended up almost at $3 billion in revenue with Azure.

Remember Cisco’s estimate about the “addressable cloud market”? In 2018, Gartner presented the number of $145B for the worldwide public cloud spend in 2017. For 2023, Gartner forecasted a cloud spend of almost $600 billion.

Data Gravity and Egress Costs

Another topic I want to highlight is “data gravity” coined by Dave McCrory in 2010:

Consider Data as if it were a Planet or other object with sufficient mass. As Data accumulates (builds mass) there is a greater likelihood that additional Services and Applications will be attracted to this data. This is the same effect Gravity has on objects around a planet. As the mass or density increases, so does the strength of gravitational pull. As things get closer to the mass, they accelerate toward the mass at an increasingly faster velocity. Relating this analogy to Data is what is pictured below.

Put data gravity together with egress costs, then one realizes that data gravity and egress costs limit mobility and/or portability discussions:

Source: https://medium.com/@alexandre_43174/the-surprising-truth-about-cloud-egress-costs-d1be3f70d001

By the way, what happened to “economies of scale”?

The Cloud Paradox

As you should understand by now topics like costs, lock-in, and failed expectations (technically and commercially) are being discussed for more than a decade already. That is why I highlighted NIST’s sentence above: Cloud portability means that data can be moved from one cloud system to another and that applications can be ported and run on different cloud systems at an acceptable cost.

Acceptable cost.

While the (public) cloud seems to be the right choice for some companies, we now see other scenarios popping up more often: reverse cloud migrations (also called repatriation sometimes)

I have customers who tell me, that the exact same VM with the exact same business logic costs between 5 to 7 times more when they moved it from their private to a public cloud.

Let’s park that and cover the “true costs of cloud” another time. 😀

Public Cloud Services Spend

Looking at Vantage’s report, we can see the following top 10 services on AWS, Azure and GCP ranked by the share of costs:

If they are right and the numbers are true for most enterprises, it means that customers spend most of their money on virtual machines (IaaS), databases, and storage.

What does Gartner say?

Let’s have a look at the most recent forecast called “Worldwide Public Cloud End-User Spending to Reach Nearly $600 Billion in 2023” from April 2023:

Gartner April 2023 Public Cloud Spend Forecast

All segments of the cloud market are expected see growth in 2023. Infrastructure-as-a-service (IaaS) is forecast to experience the highest end-user spending growth in 2023 at 30.9%, followed by platform-as-a-service (PaaS) at 24.1%

Conclusion

If most companies spend around 30% of their budget on virtual machines and Gartner predicts that IaaS is still having a higher growth than SaaS or PaaS, a supercloud architecture for IaaS would make a lot of sense. You would have the same technology format, could use the same networking and security policies, and existing skills, and benefit from many other advantages as well.

Looking at the VMware Cloud approach, which allows you to run VMware’s software-defined data center (SDDC) stack on AWS, Azure, Google, and many other public clouds, customers could create a seamless hybrid multi-cloud architecture – using the same technology across clouds.

Other VMware products that fall under the supercloud category would be Tanzu Application Platform (TAP), the Aria Suite, and Tanzu for Kubernetes Operations (TKO) which belong to VMware’s Cross-Cloud Services portfolio.

Final Words

I think it is important that we understand, that we are still in the early days of multi-cloud (or when we use multiple clouds).

Customers get confused because it took them years to deploy or move new or existing apps to the public cloud. Now, analysts and vendors talk about cloud exit strategies, reverse cloud migrations, repatriations, exploding cloud costs, and so on.

Yes, a supercloud is about a hybrid multi-cloud architecture and a standardized design for building apps and platforms across cloud. But the most important capability, in my opinion, is the fact that it makes your IT landscape future-ready on different levels with different abstraction layers.

What Is Unique About Oracle Cloud VMware Solution?

What Is Unique About Oracle Cloud VMware Solution?

Everyone talks about multi-cloud and in most cases they mean the so-called big 3 that consist of Amazon Web Services (AWS), Microsoft Azure and Google Cloud. If we are looking at the 2021 Gartner Magic Quadrant for Cloud Infrastructure & Platform Services, one can also spot Alibaba Cloud, Oracle, IBM and Tencent Cloud.

VMware has a strategic partnership with 6 of these hyperscalers and all of these 6 public clouds offer VMware’s software-defined data center (SDDC) stack on top of their global infrastructure:

While I mostly have to talk about AWS, AVS and GCVE, I am finally getting the chance to attend a OCVS customer workshop led by Oracle. That is why I wanted to prepare myself accordingly and share my learnings with you.

Amazon Web Services, Microsoft Azure and Google Cloud dominate the cloud market, but Oracle has unique capabilities and characteristics that no one else can deliver. Additionally, Oracle’s Cloud Infrastructure (OCI) has shown an impressive pace of innovation in the past two years, which led to a 16% increase on Gartner’s solution scorecard for OCI (November 2021, from 62% to 78%), which put them into the fourth place behind Alibaba Cloud!

What is Oracle Cloud VMware Solution?

Oracle Cloud VMware Solution or OCVS is a result of the strategic partnership announced by VMware and Oracle in September 2019. Like the other VMware Cloud solutions like VMC on AWS, AVS or GCVE, Oracle Cloud VMware Solution will enable customers to run VMware Cloud Foundation on Oracle’s Generation 2 Cloud Infrastructure.

Meaning, running an on-premises VMware-based infrastructure combined with OCVS should make cloud migrations easier and faster, because it is the same foundation with vSphere, vSAN and NSX.

Oracle Cloud VMware Solution Key Differentiator #1 – Different SDDC Bundles

Customers can choose between a multi-host SDDC (minimum of 3 production hosts) and a single-host SDDC, that is made for test and dev environments. Oracle guarantees a monthly uptime percentage of at least 99.9% for the OCVS service.

OCVS offers three different ESXi software versions and supports the following versions of other components:

  • ESXi 7.0, 6.7 or 6.5
  • vCenter 7.0, 6.7 or 6.5
  • vSAN 7.0, 6.7 or 6.5
  • NSX-T 3.0
  • HCX Advanced 4.0, 3.5 (default option)
  • HCX Enterprise (billed upgrade)

Note: vSphere 6.5 and vSphere 6.7 reach the End of General Support from VMware on October 15, 2022.

Key Differentiator #2 – Customer-Managed & Baremetal Hosts

The VMware Cloud offerings from AWS, Azure or Google are all vendor-controlled and customers get limited access to the VMware hosts and infrastructure components. With Oracle Cloud VMware Solution, customers get baremetal servers and the same operational experience as on-premises. This means full control over VMware infrastructure and its components:

  • SSH access to ESXi
  • Edit vSAN cluster settings
  • Browse datastores; upload and delete files
  • Customer controls the upgrade policy (version, time, defer)
  • Oracle has NO ACCESS after the SDDC provisioning!

Note: According to Oracle it takes about 2 hours to deploy a new SDDC that consists of 3 production hosts.

Customers can choose between Intel- and AMD-based hosts:

  • Two-socket BM.DenseIO2.52 with two CPUs each running 26 cores (Intel)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 16 cores (AMD)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 32 cores (AMD)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 64 cores (AMD)

Details about the compute shapes can be found here.

Key Differentiator #3 – Availability Domains

To provide high throughput and low latency, an OCVS SDDC is deployed by default across a minimum of three fault domains within a single availability domain in a region. But, upon request it is also possible to deploy your SDDC across multiple availability domains (AD), which comes with a few limitations:

  • While OCVS can scale from 3 up to 64 hosts in a single SDDC, Oracle recommends a maximum of 16 ESXi hosts in a multi-AD architecture
  • This architecture can have impacts on vSAN storage synchronization, and rebuild and resync times

Most hyperscaler only let you use two availability zones and fault domains in the same region. With Oracle it is possible to distribute the minimum of 3 hosts to 3 different availability domains.  An availability domain consists of one or more data centers within the same region.

Note: Traffic between ADs within a region is free of charge.

Key Differentiator #4 – Networking

Because OCVS is customer-managed and can be operated like your on-premises environment, you also get “full” control over the network. OCVS is installed within a customers’ tencancy, which gives customer the advantage to run their VMware SDDC workloads in the same subnet as OCI native services. This provides lower latency to the OCI native services, especially for customers that are using Exadata for example.

Another important advantage of this architecture is capability to create VLAN-backed port groups on your vSphere Distributed Switch (VDS).

Key Differentiator #5 – External Storage

Since March 2022 the OCI File Storage service (NFS) is certified as secondary storage for an OCVS cluster. This allows customers to scale the storage layer of the SDDC without adding new compute resources at the same time.

And just announced on 22 August 2022, with Oracle’s summer ’22 release, OCVS customers can now connect to a certified OCI Block Storage through iSCSI as a second external storage option.

Block Storage provides high IOPS to OCI, and data is stored redundantly across storage servers with built-in repair mechanisms with a 99.99% uptime SLA.

Key Differentiator #6 – Billing Options

OCVS is currently only sold and supported by Oracle. Like with other cloud providers and VMware Cloud offerings, customers have different pricing options depending upon their commitment levels:

  • On-demand (hourly)
  • 1 month
  • 1 year
  • 3 years

The rule of thumb for any hyperscaler says, that a 1-year commitment get around 30% discount and the 3-year commitments are around 50% discount.

The unique characteristic here is the monthly commitment option, which is caluclated with a discount of 16-17% depending on the compute shape.

Note: OCVS is not part (yet) of the VMware Cloud Universal subscription (VMCU).

Key Differentiator #7 – Global Reach

Currently, OCI is available in 39 different cloud regions (21 countries) and Oracle announced five more by the end of 2022. On day one of each region, OCVS is available with a consistent and predictable pricing that doesn’t vary from region to region.

To compare: AWS has launched 27 different regions with 19 being able to host the VMware Cloud on AWS service. In Switzerland, AWS just opened their new data center without having the VMware Cloud on AWS service available, while OCVS is already available in Zurich.

Use Cases

While OCVS is a great solution for joint VMware and Oracle customers, it is not necessary for customers to using Oracle Cloud Infrastructure native solutions.

Data Center Expansion

As you just learned before, OCVS is a great fit if you want to maintain the same VMware software versions on-premises and in OCI. The classic use case here is the pure data center expansion scenario, which allows you to stretch your on-premises infrastructure to OCI, without the need to use their native services.

VMware Horizon on OCVS

As I mentioned at the beginning, Oracle Cloud VMware Solution is based on VMware Cloud Foundation and so it is no surprise that Horizon on OCVS is fully supported.

The Horizon deployment on OCVS works a little bit different compared to the on-premises installation and there is no feature parity yet:

  • Horizon on OCVS does not support vGPUs yet.
  • Horizon on OCVS does not support IPv6 yet.
  • Horizon on OCVS does not support vTPM yet. In this situation it is recommended to use shielded OCVS instances.

Note: The support of NSX Advanced Load Balancer (Avi) is still a roadmap item

VMware Tanzu for OCVS

Since April 2022 it is possible for joint VMware and Oracle customers to use Tanzu Standard and its components with Oracle Cloud VMware Solution. Tanzu Standard comes with VMware’s Kubernetes distribution Tanzu Kubernetes Grid (TKG) and Tanzu Mission Control, which is the right solution for multi-cloud, multi-cluster K8s management.

With TMC you can deploy and manage TKG clusters on vSphere on-premises or on Oracle Cloud VMware Solution. You can even attach existing Kubernetes clusters from other vendors like RedHat OpenShift, Amazon EKS or Azure Kubernetes Service (AKS).

OCVS Tanzu Standard 

Oracle Cloud VMware Solution FAQ

VMware’s OCVS FAQ can be found here.

Oracle’s OCVS FAQ can be found here.

Additional Resources

Here is a list of additional resources:

Interclouds And The Future of Cloud Computing

Interclouds And The Future of Cloud Computing

I am finally taking the time to write this piece about interclouds, workload mobility and application portability. Some of my engagements during the past four weeks led me several times to discussions about interclouds and workload mobility.

Cloud to Cloud Interoperability and Federation

Who has thought back in 2012 that we will have so many (public) cloud providers like AWS, Azure, Google Cloud, IBM Cloud, Oracle Cloud etc. in 2022?

10 years ago, many people and companies were convinced that the future consists of public cloud infrastructure only and that local self-managed data centers are going to disappear.

This vision and perception of cloud computing has dramatically changed over the past few years. We see public cloud providers stretching their cloud services and infrastructure to large data centers or edge locations. It seems they realized, that the future is going to look differently than a lot of people anticipated back then.

I was not aware that the word “intercloud” and the need for it exists for a long time already apparently. Let’s take David Bernstein’s presentation as an example, which I found by googling “intercloud”:

This presentation is about avoiding the mistake of using proprietary protocols and cloud infrastructures that lead to silos and a non-interoperable architecture. He was part of the IEEE Intercloud Working Group (P2302) which was working on a standard for “Intercloud Interoperability and Federation (SIIF)” (draft), which mentioned the following:

Currently there are no implicit and transparent interoperability standards in place in order for disparate
cloud computing environments to be able to seamlessly federate and interoperate amongst themselves.
Proposed P2302 standards are a layered set of such protocols, called “Intercloud Protocols”, to solve the interoperability related challenges. The P2302 standards propose the overall design of decentralized, scalable, self-organizing federated “Intercloud” topology.

David Bernstein Intercloud

I do not know David Bernstein and the IEEE working group personally, but it would be great to hear from some of them, what they think about the current cloud computing architectures and how they envision the future of cloud computing for the next 5 or 10 years.

As you can see, the wish for an intercloud protocol or an intercloud exists since a while. Let us quickly have a look how others define intercloud:

Cisco in 2008 (it seems that David Bernstein worked at Cisco that time). Intercloud is a network of clouds that are linked with each other. This includes private, public, and hybrid clouds that come together to provide a seamless exchange of data.

teradata. Intercloud is a cloud deployment model that links multiple public cloud services together as one holistic and actively orchestrated architecture. Its activities are coordinated across these clouds to move workloads automatically and intelligently (e.g., for data analytics), based on criteria like their cost and performance characteristics.

The Future of Cloud Computing

I found this post on Twitter on May 19th, 2022:

Alvin Cheung Berkeley Intercloud

Alvin Cheung is an associate professor at Berkeley EECS and wrote the following in his Twitter comments:

we argue that cloud computing will evolve to a new form of inter-cloud operation: instead of storing data and running code on a single cloud provider, apps will run on an inter-operating set of cloud providers to leverage their specialized services / hw / geo etc, much like ISPs.

Alvin and his colleagues wrote a publication which states “A Berkeley View on the Future of Cloud Computing” that mentions the following very early in the PDF:

We predict that this market, with the appropriate intermediation, could evolve into one with a far greater emphasis on compatibility, allowing customers to easily shift workloads between clouds.

[…] Instead, we argue that to achieve this goal of flexible workload placement, cloud computing will require intermediation, provided by systems we call intercloud brokers, so that individual customers do not have to make choices about which clouds to use for which workloads, but can instead rely on brokers to optimize their desired criteria (e.g., price, performance, and/or execution location).

We believe that the competitive forces unleashed by the existence of effective intercloud brokers will create a thriving market of cloud services with many of those services being offered by more than one cloud, and this will be sufficient to significantly increase workload portability.

Intercloud Broker

Organizations place their workloads in that cloud which makes the most sense for them. Depending on different regulations, data classification, different cloud services, locations, or pricing, they then decide which data or workload goes to which cloud.

The people from Berkeley do not necessarily promote a multi-cloud architecture, but have the idea of an intercloud broker that places your workload on the right cloud based on different factors. They see the intercloud as an abstraction layer with brokering services:

In my understanding their idea goes towards the direction of an intelligent and automated cloud management platform that takes the decision where a specific workload and its data should be hosted. And that it, for example, migrates the workload to another cloud which is cheaper than the current one.

Cloud Native Technologies for Multi-Cloud

Companies are modernizing/rebuilding their legacy applications or create new modern applications using cloud native technologies. Modern applications are collections of microservices, which are light, fault tolerant and small. These microservices can run in containers deployed on a private or public cloud.

Which means, that a modern application is something that can adapt to any environment and perform equally well.

The challenge today is that we have modern architectures, new technologies/services and multiple clouds running with different technology stacks. And we have Kubernetes as framework, which is available in different formats (DIY or offerings like Tanzu TKG, AKS, EKS, GKE etc.)

Then there is the Cloud Native Computing Foundation (CNCF) and the open source community which embrace the principal of “open” software that is created and maintained by a community.

It is about building applications and services that can run on any infrastructure, which also means avoiding vendor or cloud lock-in.

Challenges of Interoperability and Multiple Clouds

If you discuss multi-cloud and infrastructure independent applications, you mostly end up with an endless list of questions like:

  • How can we achieve true workload mobility or application portability?
  • How do we deal with the different technology formats and the “language” (API) of each cloud?
  • How can we standardize and automate our deployments?
  • Is latency between clouds a problem?
  • What about my stateful data?
  • How can we provide consistent networking and security?
  • What about identity federation and RBAC?
  • Is the performance of each cloud really the same?
  • How should we encrypt traffic between services in multiple clouds?
  • What about monitoring and observability?

Workload Mobility and Application Portability without an Intercloud

VMware has a different view and approach how workload mobility and application portability can be achieved.

Their value add and goal is the same, but with a different strategy of abstracting clouds.

VMware is not building an intercloud but they provide customer a  technology stack (compute, storage, networking), or a cloud operating system if you will, that can run on top of every major public cloud provider like AWS, Azure, Google Cloud, IBM Cloud, Oracle Cloud and Alibaba Cloud.

VMware Workload Mobility

This consistent infrastructure makes it especially for virtual machines and legacy applications extremely easy to be migrated to any location.

What about modern applications and Kubernetes? What about developers who do not care about (cloud) infrastructures?

Project Cascade

At VMworld 2021, VMware announced the technology preview of “Project Cascade” which will provide a unified Kubernetes interface for both on-demand infrastructure (IaaS) and containers (CaaS) across VMware Cloud – available through an open command line interface (CLI), APIs, or a GUI dashboard.

The idea is to provide customers a converged IaaS and CaaS consumption service across any cloud, exposed through different Kubernetes APIs.

VMware Project Cascade

I heard the statement “Kubernetes is complex and hard” many times at KubeCon Europe 2022 and Project Cascade is clearly providing another abstraction layer for VM and container orchestration that should make the lives of developers and operators less complex.

Project Ensemble

Another project in tech preview since VMworld last year is “Project Ensemble“. It is about multi-cloud management platform that provides an app-centric self-service portal with predictive support.

Project Ensemble will deliver a unified consumption surface that meets the unique needs of the cloud administrator and SRE alike. From an architectural perspective, this means creating a platform designed for programmatic consumption and a firm “API First” approach.

I can imagine that it will be a service that leverages artificial intelligence and machine learning to simplify troubleshooting and that is capable in the future to intelligently place or migrate your workloads to the appropriate or best cloud (for example based on cost) including all attached networking and security policies.

Conclusion

I believe that VMware is on the right path by giving customers the option to build a cloud-agnostic infrastructure with the necessary abstraction layers for IaaS and CaaS including the cloud management platform. By providing a common way or standard to run virtual machines and containers in any cloud, I am convinced, VMware is becoming the defacto standard for infrastructure for many enterprises.

VMware Vision and Strategy 2022

By providing a consistent cloud infrastructure and a consistent developer model and experience, VMware bridges the gap between the developers and operators, without the need for an intercloud or intercloud protocol. That is the future of cloud computing.

 

Other relevant resources:

 

 

Current vSphere Subscription Licensing Options

Current vSphere Subscription Licensing Options

Update June 27, 2022: VMware announced vSphere+ and vSAN+

VMware is giving their customers more and more the option to move towards a subscription-based licensing model. In general, companies are moving away from the large pay-up-front deals and replace them with recurring subscriptions. Vendors like VMware are making a lot of investments to provide the structures, processes and capabilities to offer subscription licenses (and SaaS services). Organizations see the benefits of subscription licenses and this blog describes the current options if you want to move your vSphere perpetual licenses towards vSphere subscription.

vSphere+ Advantage – vSphere Subscription Service

Since December 2021, VMware offers vSphere Advantage in limited regions (aka Initial Availability).

vSphere Advantage gives you the flexibility to manage and operate your on-premises vSphere infrastructure while leveraging several VMware Cloud capabilities:

  • Transition from vSphere perpetual to vSphere subscription-based consumption for your vSphere deployments
  • Complete view of the globally distributed on-premises vSphere inventory
  • VMware-managed vCenter Servers (aka Project Arctic, not GA yet)

From a centralized VMware Cloud Console you can monitor events, alerts, capacity utilization, and the security posture of your vSphere infrastructure.

It is also possible now for you to plan and upgrade your existing vSphere licensing keys and replace them with vSphere Advantage, which enables you to make use of keyless entitlements. This keyless entitlement makes it very easy for customers to stay compliant all the time and to understand the current subscription usage.

vSphere+ Operations

To start using vSphere Advantage, you must enable communication between your on-premises vCenter Server and VMware Cloud by using a vCenter Cloud Gateway. This requires an outbound connection (443, HTTPS) only, no VPN is needed.

 

Current vCenter Server Requirements:

  • The vCenter Server version must be 7.0 Update 3a and later
  • Configure the vCenter Server with a backup and restore mechanism
  • Dedicate at least three ESXi hosts for the vCenter Server. (Recommended)
  • The vCenter Server must be self-managed. It must manage its own ESXi hosts and virtual machines

Unsupported vCenter Configurations:

  • Ensure that the vCenter Server is not configured in High Availability mode
  • If the vCenter Server is configured in Enhanced Linked Mode (ELM), unlink it from ELM. See Repoint a vCenter Server Node to a New Domain. ELM is no longer required because with vSphere Advantage you can monitor your entire vSphere inventory in a single pane of glass.
  • Ensure that the vCenter Server is not configured with NSX for vSphere, vRealize Operations Manager, Site Recovery Manager, vCloud Suite, or vSAN.

Project Arctic – VMware-Managed vCenter (Roadmap)

VMware introduced Project Arctic at VMworld 2021. Now it’s called vSphere Advantage. While a hybrid cloud operating model for vSphere becomes default now, it’s not yet possible to let VMware manage your vCenter Servers. We can expect that this capability will be shipped and made generally available somewhen in 2022.

VMware Edge Compute Stack

Edge Compute Stack (ECS) is a purpose-built stack that is available in three different editions (information based on initial availability from VMworld 2021):

VMware Edge Comput Stack Editions

As you can see, each VMware Edge Compute Stack edition has the vSphere Enterprise+ (hypervisor) included. Software-defined storage with vSAN is optional, but Tanzu for running containers is always part of each edition.

Note: The Edge Compute Stack includes vSphere subscription licenses.

Other Options

If you are running the VMware Cloud Foundation (VCF) stack and look for a managed service offering, which includes subscription-based licensing, have a look at the following alternatives:

As you can see, you can start small with vSphere Advantage and grow big with VMware Cloud Universal as the final destination.

Multi-Cloud and Sovereign Cloud – Deploy the Right Data to the Right Cloud

Multi-Cloud and Sovereign Cloud – Deploy the Right Data to the Right Cloud

According to Gartner, regulated industry customers (such as finance and healthcare) and governments are looking for digital borders. Companies in these sectors are looking to reduce vendor lock-in and single points of failure with their cloud providers, whose data centers sometimes are also outside their country (e.g., Switzerland based customer with an AWS data center in Frankfurt).

The market for cloud technology and services is currently dominated by US and Asian cloud providers and many (European) companies store their data in these regions. There are European regions and data centers, but the geopolitical and legal challenges, concerns about data control, industry compliance and sovereignty are driving the creation of new national clouds.

That is why Gartner sees sovereign clouds as one of the emerging technologies, which is currently at the start of the August 2021 published hype cycle:

Das sind die aufstrebenden Technologien im Hype Cycle 2021 | IT-Markt

Image Source: https://www.it-markt.ch/news/2021-08-27/das-sind-die-aufstrebenden-technologien-im-hype-cycle-2021

Use Case 1 – Swiss Federal Administration

As an example and first use case I would mention the Swiss federal administration, which doesn’t see the need for an independent technical infrastructure under public law.

In June 2021 they published the statement that they notified the following cloud providers to become part of the federal administration’s initial multi-cloud architecture:

  • Amazon Web Services (AWS)
  • IBM
  • Microsoft
  • Oracle
  • Alibaba

There are several reasons (pricing, market share, local data center availability) that led to this decision to build a multi-cloud architecture with these cloud providers. But it was interesting to read that the government did an assessment and concluded that no technical independent infrastructure is needed – no need for a local sovereign cloud.

This means that they want to keep their existing data centers to provide infrastructure and data sovereignty.

Interestingly, the Swiss confederation is exploring initiatives for secure and trustworthy data infrastructure for Europe and is examining participation in GAIA-X.

Use Case 2 – Current Sovereign Cloud Providers

There are other examples where organizations and governments saw the need for a sovereign cloud. Having a public cloud provider’s data center in the same country does not necessarily mean, that it’s a sovereign cloud per se. Hyperscale clouds often rely on non-domestic resources that maintain their data centers or provide customer support.

Governments and regulated industries say that you need domestic resources to provide a true sovereign cloud.

A good example here is the UK government, who has chosen the provider UKCloud, that delivers a consistent experience that spans the edge, private cloud and sovereign cloud.

Another VMware sovereign cloud provider is AUCloud, who provides IaaS to the Australian government, defense, defense industries and Critical National Industry (CNI) communities.

The third example I would like to highlight is Saudi Telecom Company (STC), that brings sovereign cloud services to Saudi Arabia.

What do UKCloud, AUCloud and STC have in common? They all joined the pretty new VMware Sovereign Cloud initiative and built their sovereign clouds based on VMware technology.

Use Case 3 – Cloud Act

Another motivation for a sovereign cloud could be the Cloud Act, which is a U.S. law that gives American authorities unrestricted access to the data of American IT cloud providers. It does not matter where the data is effectively stored. In the event of a criminal prosecution, the authorities have a free hand and do not even have to notify the data owners.

What does this mean for cloud users? Because of the Cloud Act, they cannot be sure whether when and to what extent their data or the data of their customers will be read by foreign authorities.

Use Case 4 – GAIA-X

Let me quote the official explanation of GAIA-X:

The architecture of Gaia-X is based on the principle of decentralization. Gaia-X is the result of many individual data owners (users) and technology players (providers) – all adopting a common standard of rules and control mechanisms – the Gaia-X standard.

Together, we are developing a new concept of data infrastructure ecosystem, based on the values of openness, transparency, sovereignty, and interoperability, to enable trust. What emerges is not a new cloud physical infrastructure, but a software federation system that can connect several cloud service providers and data owners together to ensure data exchange in a trusted environment and boost the creation of new common data spaces to create digital economy.

Gaia-X aims to mitigate Europe’s dependency on non-European providers and there seems to be no pre-defined architecture or preferred vendor when it comes to the underlying cloud platform GAIA-X sits on top.

While one would believe that a sovereign cloud is mandatory for GAIA-X, it looks more like a cloud-agnostic data exchange platform hosted by European providers and customers.

I am curious how providers build, operate and maintain a sovereign cloud stack based on open-source software.

How real is the need for Sovereign Cloud?

If a company or government wants to keep, extend, and maintain their own local data centers, this is still a valid option of course. But the above examples showed that the need for sovereign clouds exists and that the global interest seems to be growing.

What is the VMware Sovereign Cloud Initiative?

In October 2021 VMware announced their VMware Sovereign Cloud initiative where they partnering with cloud service providers to deliver a sovereign cloud infrastructure with cloud services on top to customers in regulated industries.

To become a so-called VMware Sovereign Cloud Provider, partners must go through an assessment and meet specific requirements (framework) to show their capability to provide a sovereign cloud infrastructure.

VMware defines a sovereign cloud as one that:

  • Protects and unlocks the value of critical data (e.g., national data, corporate data, and personal data) for both private and public sector organizations
  • Delivers a national capability for the digital economy
  • Secures data with audited security controls
  • Ensures compliance with data privacy laws
  • Improves control of data by providing both data residency and data sovereignty with full jurisdictional control

VMware aims to help regulated industry and government customers to execute their cloud strategies by connecting them to VMware Sovereign Cloud Providers (like UKCloud, AUcloud, STC, Tietoevry, ThinkOn or OVHcloud).

Sovereign Cloud Providers in Switzerland

Currently, there is no official VMware sovereign cloud provider in Switzerland. We have a few and strong VMware cloud provider partners as part of the VMware Cloud Provider Program (VCPP):

Let us come back to the use case 1 with the Swiss federal administration. They are building a multi-cloud and would have in Switzerland a potential number of at least 10 cloud service providers, which could become an official VMware Sovereign Cloud Provider.

VMware Sovereign Cloud Borders 

Image Source: https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/vmw-sovereign-cloud-solution-brief-customer.pdf

There are other Swiss providers who are building a sovereign cloud based on open-source technologies like OpenStack.

Hyperscalers like Microsoft or Google need to partner with local providers if they want to build a sovereign cloud and deliver services.

VMware already has 4300+ partners with the strategic partnerships and the same technology stack in 120+ countries and some of them are already sovereign cloud providers as mentioned before.

VMware Sovereign Cloud initiative

Image Source: https://blogs.vmware.com/cloud/2021/10/06/vmware-sovereign-cloud/

What are the biggest challenges with a multi-cloud and a sovereign cloud infrastructure?

What do you think are the biggest challenges of an organization that builds a multi-cloud with different public cloud providers and sovereign clouds?

Let me list a few questions here:

  • How can I easily migrate my workloads to the public or sovereign cloud?
  • How long does it take to migrate my applications?
  • Which cloud is the right one for a specific workload?
  • Do I need to refactor some of my applications?
  • How can I consistently manage and operate 5 different public/sovereign cloud providers?
  • What if I one of my cloud providers is not strategic anymore? How can I build a cloud exit strategy?
  • How do I implement and maintain security?
  • What if I want to migrate workloads back from a public cloud to an on-premises (sovereign) cloud?
  • Which Kubernetes am I going to use in all these different clouds?
  • How do I manage and monitor all these different Kubernetes clusters, networking and security policies, create secure application communication between clouds and so on?
  • How do I control costs?

These are just a small number of questions, but I think it would take your organization or your cloud platform team a while to come up with a solution.

What is the VMware approach? Let me list some other articles of mine that help you to better understand the VMware multi-cloud approach:

Conclusion

Public cloud providers build local data centers and provide data residency. Sovereign clouds provide data sovereignty. Resident data may be accessed by a foreign authority while data sovereignty refers to data being subject to privacy laws and governance structures within the nation where that data is collected.

Controlling the location and access of data in the cloud has become an important task for CIOs and CISOs and I personally believe that sovereign clouds are not becoming important in 2 or 3 years, they are already very important and relevant, and we can expect a growth in this area in the next months.

My conclusion here is, that sovereign clouds and the public clouds are not competitors, they complement each other.