VMworld 2021 – My Content Catalog and Session Recommendation

VMworld 2021 – My Content Catalog and Session Recommendation

VMworld 2021 is going to happen from October 6-7, 2021 (EMEA). This year you can expect so many sessions and presentations about the options you have when combining different products together, that help you to reduce complexity, provide more automation and therefore create less overhead.

Let me share my 5 personal favorite picks and also 5 recommended sessions based on the conversations I had with multiple customers this year.

My 5 Personal Picks

10 Things You Need to Know About Project Monterey [MCL1833]

Project Monterey was announced in the VMworld 2020 keynote. There has been tremendous work done since then. Hear Niels Hagoort and Sudhansu Jain talking about SmartNICs and how they will redefine the data center with decoupled control and data planes – for ESXi hosts and bare-metal systems. They are going to cover and demo the overall architecture and use cases!

Upskill Your Workforce with Augmented and Virtual Reality and VMware [VI1596]

Learn from Matt Coppinger how augmented realited (AR) and virtual reality (VR) are transforming employee productivity, and how these solutions can be deployed and managed using VMware technologies. Matt is going to cover the top enterprise use cases for AR/VR as well as the challenges you might face deploying these emerging technologies. Are you interested how to architect and configure VMware technologies to deploy and manage the latest AR/VR technology, applications and content? If yes, then this session is also for you.

Addressing Malware and Advanced Threats in the Network [SEC2027] (Tech+ Pass Only)

I am very interested to learn more cybersecurity. With Chad Skipper VMware has an expert who can give insights on how the Network Detection and Response (NDR) capabilities if NSX Advanced Threat Prevention provide visibility, detection and prevention of advanced threats.

60 Minutes of Non-Uniform Memory Access (NUMA) 3rd Edition [MCL1853]

Learn more about NUMA from Frank Denneman. You are going to learn more about the underlying configuration of a virtual machine and discover the connection between the Generapl-Purpose Graphics Processing Unit (GPGPU) and the NUMA node. You will also understand after how your knowledge of NUMA concepts in your cluster can help the developer by aligning the Kubernetes nodes to the physical infrastructure with the help of VM Service.

Mount a Robust Defense in Depth Strategy Against Ransomware [SEC1287]

Are you interested to learn more about how to protect, detect, respond to and recover from cybersecurity attacks across all technology stacks, regardless of their purpose or location? Learn more from Amanda Blevins about the VMware solutions for end users, private clouds, public clouds and modern applications.

5 Recommended Sessions based on Customer Conversations

Cryptographic Agility: Preparing for Quantum Safety and Future Transition [VI1505]

A lot of work is needed to better understand cryptographic agility and how we can address and manage the expected challenges that come with quantum computing. Hear VMware’s engineers from the Advanced Technology Group talking about the requirements of crypto agility and VMware’s recent research work on post-quantum cryptography in the VMware Unified Access Gateway (UAG) project.

Edge Computing in the VMware Office of the CTO: Innovations on the Horizon [VI2484]

Let Chris Wolf give you some insight into VMware’s strategic direction in support of edge computing. He is going to talk about solutions that will drive down costs while accelerating the velocity and agility in which new apps and services can be delivered to the edge.

Delivering a Continuous Stream of More Secure Containers on Kubernetes [APP2574]

In this session one can see how you can use two capabilities in VMware Tanzu Advanced, Tanzu Build Service and Tanzu Application Catalog, to feed a continuous stream of patched and compliant containers into your continuous delivery (CD) system. A must attend session delivered by David Zendzian, the VMware Tanzu Global Field CISO.

A Modern Firewall For any Cloud and any Workload [SEC2688]

VMware NSX firewall reimagines East-West security by using a distributed- and software-based approach to attach security policies to every workload in any cloud. Chris Kruegel gives you insights on how to stop lateral movement with advanced threat prevention (ATP) capabilities via IDS/IPS, sandboxing, NTA and NDR.

A Practical Approach for End-to-End Zero Trust [SEC2733]

Hear different the VMware CTOs Shawn Bass, Pere Monclus and Scott Lundgren talking about a zero trust approach. Shawn and the others will discuss specific capabilities that will enable customers to achieve a zero trust architecture that is aligned to the NIST guidance and covers secure access for users as well secure access to workloads.

Enjoy VMworld 2021! 🙂

 

VMware is Becoming a Leading Cybersecurity Vendor

VMware is Becoming a Leading Cybersecurity Vendor

For most organizations it is still new that they can talk about cybersecurity with VMware. VMware’s intrinsic security vision is something we have seen the first time at VMworld 2019, and since then it has become more a strategy than a vision.

VMware is not new to enterprise security and it didn’t start with Workspace ONE nor with NSX. Security was already part of their DNA since it was possible for the first time that two virtual machines can share a physical host and have isolated compute resources assigned.

Another example of (intrinsic) security came with vSAN and the encryption of data at rest, then followed by unified endpoint management and identity/access management with Workspace ONE. But wait!

It was August 2013 when Pat Gelsinger introduced NSX as the platform for network virtualization, which included the distributed firewall capability already. The internal firewall is built into the VMware hypervisor since almost 8 years now, wow!

NSX Service-Defined Firewall

I had no customer so far, who wasn’t talking about achieving zero trust security with micro-segmentation to prevent lateral (east-west) movement. Zero trust is one approach to improve data center defenses with the inspection of every traffic flow within the data center. The idea is to divide the data center infrastructure into smaller security zones and that the traffic between the zones is inspected based on the organization’s defined policies.

Perimeter Defense vs Micro-Segmentation

Micro-segmentation puts a firewall to each virtual machine or workload, allowing us to protect all east-west communication.

So, deploy micro-segmentation and the problem is solved, right? Not quite. While the concept of micro-segmentation has been around for a while, organizations still face barriers when trying to apply it in practice.

Let’s have a look at some of the barriers to micro-segmentation and why this solution alone is not enough (anymore) to achieve zero trust:

  • Policy discovery challenges – Identifying the right micro-segments and configuring the proper security policies is an extremely daunting task, especially in a dynamic data center environment.
  • Limited-access controls – Basing micro-segmentation solely on L4 attributes (e.g., IP addresses and ports) is not enough. The ephemeral nature of applications and flows requires more than that.
  • Reliance on agents – Some micro-segmentation implementations require the installation of extra software agents on each virtual machine (VM), causing complexity and introducing vulnerability.
  • Lack of threat detection and prevention – Threats often masquerade as normal-looking traffic. Settling for basic traffic blocking rules isn’t enough.

What does that tell us? Understanding the current applications’ topology and communication flows between their sub-services and -components is not easy. And with applications, which become less monolithic but very dynamic and distributed across multiple clouds, it becomes almost impossible, right?

NSX Intelligence is a home-grown solution that automates policy discovery, understands the communication between services and can construct apps and flows maps (topologies).

NSX Intelligence Recommendations

Can we assume that traffic from A to B over HTTPS is safe per se with micro-segmentation? Nope.

If we want to enhance traffic analysis capabilities and have a deeper look into traffic, the L7 (application layer) capabilities for micro-segmentation can be used.

Firewall rules cannot consume application IDs. A context-aware firewall identifies applications and enforces a micro-segmentation for east-west traffic, independent of the port that the application uses.

Other use case: For virtual desktop infrastructures (VDI), you could use VMware NSX’s ability to provide Active Directory identity-based firewall (IDFW) rules.

Okay. We have a topology now and can create context-aware service-defined firewall rules. How can we differentiate between good or bad traffic? How can we detect network anomalies?

Today’s attacks are becoming more sophisticated and hackers use masquerading techniques to embed threats within normal-looking traffic flows. Micro-segmentation alone will not intercept hidden threats, it only identifies traffic flows that should be allowed or blocked.

It’s time to talk about advanced inspection capabilities.

NSX Distributed IDS/IPS

In general, for a firewall to inspect traffic, the traffic has to pass through it. In a virtual world this means we would redirect traffic from the VM’s to the firewalls and back. A practice called hair-pinning:

Firewall Hair-Pinning

That results in additional traffic and unnecessary latency. NSX has a distributed architecture, there is no centralized appliance that limits security capacity and network traffic doesn’t need to be hair-pinned to a network security stack for traffic inspection. Everything done with physical appliance can now be done in software (see coloring).

Software-Defined Networking without Hair-Pinning

The term intrinsic security always means that security is built into the infrastructure. The micro-segmentation capabilities including NSX Intelligence come without an agent – no reliance on agents!

The VMware NSX Distributed IDS/IPS functionality adds additional traffic inspection capabilities to the service-defined firewall and follows the same intrinsic security principles.

Note: These regular-expression IDS/IPS engines detect traffic patterns and are programmed to look for malicious traffic patterns.

NSX Distributed IDPS

NSX Advanced Threat Prevention (ATP)

At VMworld 2020 VMware announced NSX Advanced Threat Protection, that brings technology from their Lastline acquisition to the NSX service-defined firewall.

In my understanding, Lastline’s core product was a malware sandbox that can go deeper (than other sandboxes from other vendors) by using a full-system emulation to look at every instruction the malware executes.

The Lastline system uses machine learning that recognizes essential elements of an attack, unlike the narrow signature-based systems that miss the many variants an attacker may use. The Lastline approach is not just anomaly detection – anomaly detection treats every outlier as bad and results in many false positives. Lastline leverages the deep understanding of malicious behavior to flag clearly bad activities such as East-West movement, command and control activity, and data exfiltration.

This brings us to the powerful combination of the existing VMware capabilities with recently integrated Lastline feature set:

NSX FW with ATP Features

NSX Network Detection and Response

Network Detection and Response (NDR) is a category of security solutions that complement EDR (we talk about Endpoint Detection and Response later) tools.

Powered by artificial intelligence (AI), NSX NDR maps and defends against MITRE ATT&CK techniques with the current capabilities:

NSX NDR MITRE ATTACK Framework Capabilities Q2 2021

NSX NDR protects the network, cloud and hybrid cloud traffic, and provides a cloud-based and on-prem architecture that enables sensors to gain comprehensive visibility into traffic that crosses the network perimeter (north/south), as well as traffic that moves laterally inside the perimeter (east/west).

NSX NDR uses a combination of four complementary technologies to detect and analyze advanced threats:

NSX NDR Technologies

Behavior-based Network Traffic Analysis (NTA)

Network Traffic Analysis tools are all about detecting anomalies within the network (on-prem and public cloud) and use AI to create models of normal network activity and then alert on anomalies.

VMware NTA Anomalies

The challenge today is that not all anomalies are malicious. With Lastline’s NTA, VMware can now pick up threat behaviors and correlate these to network anomalies and vice versa. Because of this, according to VMware, they have the industry’s most accurate threat detection with minimal false positives.

NSX NDR NTA Anomaly 2

Intrusion Detection and Prevention System (IDPS)

The NSX Advanced Threat Protection bundle includes IDS/IPS, which is integrated into NSX. The NSX Distributed IDS/IPS benefits from the unique application context from the hypervisor and network virtualization layers to make threat detection more accurate, efficient and dynamic.

The key capabilities of NSX Distributed IDS/IPS include:

  • Distributed analysis
  • Curated, context-based signature distribution
  • Application context-driven threat detection
  • Policy and state mobility
  • Automated policy lifecycle management

Use cases for NSX Distributed IDS/IPS include:

  • Easily achieving regulatory compliance
  • Virtualizing security zones
  • Replacing discrete appliances
  • Virtual patching vulnerabilities

NSX Advanced Threat Analyzer (Sandbox)

Included with NSX Advanced Threat Prevention, Advanced Threat Analyzer provides complete malware analysis and enables accurate detection and prevention of advanced threats. It deconstructs every behavior engineered into a file or URL, and sees all instructions that a program executes, all memory content, and all operating system activity.

NSX NDR Sandbox Ransomware

Other malware detection technologies, such as traditional sandboxes, only have visibility down to the operating system level. They can inspect content and identify potentially malicious code, but they can’t interact with malware like NSX Advanced Threat Analyzer can. As a result, they have significantly lower detection rates and higher false positives, in addition to being easily identified and evaded by advanced malware. (Advanced threats evade other sandboxing technologies by recognizing the sandbox environment or using kernel-level exploits.)

VMware Threat Analysis Unit (TAU)

With the Lastline acquisition VMware could further increase the capabilities provided by the VMware Carbon Black Threat Analysis Unit (TAU) with network-centric research and behavioral analysis.

The VMware Threat Analysis Unit automatically shares the malware characteristics, behaviors and associated IoCs (Indicator of Compromises) of every malicious object curated and analyzed by VMware with all VMware customers and partners.

NSX Advanced Threat Analyzer continuously updates the VMware TAU in real time with intelligence from partner and customer environments around the world.

NSX Security Packages – How to get NSX ATP

According to the knowledge base article Product Offerings for VMware NSX Security 3.1.x (81231), the new NSX Security editions became available in October 2020:

  • NSX Firewall for Baremetal Hosts. For organizations needing an agent-based network segmentation solution.
  • NSX Firewall. For organizations with one or more sites (optionally including public cloud endpoints) that primarily need advanced security services, select advanced networking capabilities, and traffic flow visibility and security operations with NSX Intelligence.
  • NSX Firewall with Advanced Threat Protection. For organizations that need NSX Firewall capabilities as well as advanced threat prevention capabilities, such as IDS/IPS, threat analysis, and network detection and response.

Use Case with Network Virtualization

If you are a customer with a NSX Data Center Advanced or Enterprise+ license, who uses NSX for network virtualization only today, you just need the “NSX ATP add-on” for NSX Data Center Advanced or Enterprise+.

Note: The ATP add-on requires NSX-T 3.1 and above.

Use Case without Network Virtualization (no NSX Data Center)

If you have no need for network virtualization for now, you have the following options:

  1. If you look for base firewall features, you can get started with the NSX Firewall license.
  2. Should you look for base firewall features plus advanced threat protection, then start with NSX Firewall with Advanced Threat Protection.
  3. From here you still can down the network virtualization path and get the NSX Data Center Enterprise+ add-on for ATP

Use Case for VCF Customers

VCF customers have the option to start with the NSX ATP add-on for NSX NDC Adv/Ent+ as well.

If you are looking for more even security, want NSX Advanced Load Balancer (GSLB, WAF) and/or Carbon Black Cloud Workload Protection (NGAV, EDR, Audit & Remediation) as well, then you have to get the “network and app security” or “advanced security” add-on.

Carbon Black Endpoint Detection and Response (EDR)

Before the Carbon Black acquisition, VMware already had strong technology, but was not seen or known as cybersecurity vendor. And it was really this acquisition that made the whole industry understand that VMware had to be taken seriously now as a security vendor.

So, what is EDR according to Wikipedia?

“Endpoint detection and response technology is used to protect endpoints, which are computer hardware devices, from threat. Creators of the EDR technology-based platforms deploy tools to gather data from endpoint devices, and then analyze the data to reveal potential cyber threats and issues. It is a protection against hacking attempts and theft of user data. The software is installed on the end-user device and it is continually monitored. The data is stored in a centralized database. In an incident when a threat is found, the end-user is immediately prompted with preventive list of actions.”

EDR is essential since local activities on machines that may be malicious are not visible on the network. VMware Carbon Black EDR is an incident response and threat hunting solution designed for security operations centers (SOCs) and incident response (IR) teams. Enterprise EDR is delivered through the VMware Carbon Black Cloud, an endpoint protection platform that consolidates security in the cloud using a single agent, console and dataset.

The Lastline acquisition, which came after Carbon Black, was just another brilliant move from VMware!

XDR – VMware Security brings together EDR and NDR

Again, while EDR protects endpoints, NDR protects the network, so that an organization’s entire IT infrastructure is secured. EDR gives security professionals visibility into endpoints that might be compromised, but this isn’t enough when an attack has moved across the network and into other systems by the time the security team is aware of it.

This is where XDR comes in. VMware rolled out its Extended Detection and Response (XDR) strategy at VMworld 2020. By the way, it was in 2020 when Gartner named XDR as one of the top nine cybersecurity trends.

By providing a holistic view of activity across the system that avoids visibility gaps, XDR allows security teams to understand where a threat comes from and how it’s spreading across the environment – in order to eliminate it. In other words, XDR offers greater analysis and correlation capabilities and a holistic point of view.

EDR NDR Context Correlation

VMware’s XDR platform is the Carbon Black Cloud. Carbon Black Cloud’s evolution into an XDR platform includes product integrations with existing VMware products like Workspace ONE, vSphere and the NSX service-defined firewall, as well as third-party partner platforms.

At the Carbon Black Connect 2020 event, VMware announced launched their Next-Gen SOC Alliance that features integrations with the VMware Carbon Black Cloud to deliver key XDR capabilities and context into Security Information and Event Management (SIEM) technologies.

We’re in an epic war against cybercrime. We know the asymmetric nature of this war – you will not win by trying to staff your SOC with more analysts. Nor can the battle be won by deploying an individual technology focused on only one part of your IT infrastructure. EDR and NDR along with your SIEM form the winning combination you need to win the war.

Conclusion

The Carbon Black acquisition gave VMware a strong cybersecurity foundation to build on. The recent acquisition of Lastline VMware added sandboxing and network traffic analysis capabilities to their internal firewall, which is provided by NSX.

I don’t think it’s about “can VMware become a leading cybersecurity vendor” anymore. VMware has the most advanced internal firewall and is already becoming a leading cybersecurity vendor. The recent Global InfoSec award just confirms this statement:

  • Most Innovative in Endpoint Security” for VMware Carbon Black Cloud
  • “Market Leader in Firewall” for VMware NSX Service-defined Firewall

If you want to learn and see more, this YouTube video with Stijn Vanveerdeghem, Sr. Technical Product Manager and Chad Skipper, Global Security Technologist, is a good start.

Thanks for reading! 🙂

Application Modernization and Multi-Cloud Portability with VMware Tanzu

Application Modernization and Multi-Cloud Portability with VMware Tanzu

It was 2019 when VMware announced Tanzu and Project Pacific. A lot has happened since then and almost everyone is talking about application modernization nowadays. With my strong IT infrastructure background, I had to learn a lot of new things to survive initial conversations with application owners, developers and software architects. And in the same time VMware’s Kubernetes offering grew and became very complex – not only for customers, but for everyone I believe. 🙂

I already wrote about VMware’s vision with Tanzu: To put a consistent “Kubernetes grid” over any cloud

This is the simple message and value hidden behind the much larger topics when discussing application modernization and application/data portability across clouds.

The goal of this article is to give you a better understanding about the real value of VMware Tanzu and to explain that it’s less about Kubernetes and the Kubernetes integration with vSphere.

Application Modernization

Before we can talk about the modernization of applications or the different migration approaches like:

  • Retain – Optimize and retain existing apps, as-is
  • Rehost/Migration (lift & shift) – Move an application to the public cloud without making any changes
  • Replatform (lift and reshape) – Put apps in containers and run in Kubernetes. Move apps to the public cloud
  • Rebuild and Refactor – Rewrite apps using cloud native technologies
  • Retire – Retire traditional apps and convert to new SaaS apps

…we need to have a look at the palette of our applications:

  • Web Apps – Apache Tomcat, Nginx, Java
  • SQL Databases – MySQL, Oracle DB, PostgreSQL
  • NoSQL Databases – MongoDB, Cassandra, Prometheus, Couchbase, Redis
  • Big Data – Splunk, Elasticsearch, ELK stack, Greenplum, Kafka, Hadoop

In an app modernization discussion, we very quickly start to classify applications as microservices or monoliths. From an infrastructure point of view you look at apps differently and call them “stateless” (web apps) or “stateful” (SQL, NoSQL, Big Data) apps.

And with Kubernetes we are trying to overcome the challenges, which come with the stateful applications related to app modernization:

  • What does modernization really mean?
  • How do I define “modernization”?
  • What is the benefit by modernizing applications?
  • What are the tools? What are my options?

What has changed? Why is everyone talking about modernization? Why are we talking so much about Kubernetes and cloud native? Why now?

To understand the benefits (and challenges) of app modernization, we can start looking at the definition from IBM for a “modern app”:

“Application modernization is the process of taking existing legacy applications and modernizing their platform infrastructure, internal architecture, and/or features. Much of the discussion around application modernization today is focused on monolithic, on-premises applications—typically updated and maintained using waterfall development processes—and how those applications can be brought into cloud architecture and release patterns, namely microservices

Modern applications are collections of microservices, which are light, fault tolerant and small. Microservices can run in containers deployed on a private or public cloud.

Which means, that a modern application is something that can adapt to any environment and perform equally well.

Note: App modernization can also mean, that you must move your application from .NET Framework to .NET Core.

I have a customer, that is just getting started with the app modernization topic and has hundreds of Windows applications based on the .NET Framework. Porting an existing .NET app to .NET Core requires some work, but is the general recommendation for the future. This would also give you the option to run your .NET Core apps on Windows, Linux and macOS (and not only on Windows).

A modern application is something than can run on bare-metal, VMs, public cloud and containers, and that easily integrates with any component of your infrastructure. It must be something, that is elastic. Something, that can grow and shrink depending on the load and usage. Since it is something that needs to be able to adapt, it must be agile and therefore portable.

Cloud Native Architectures and Modern Designs

If I ask my VMware colleagues from our so-called MAPBU (Modern Application Platform Business Unit) how customers can achieve application portability, the answer is always: “Cloud Native!”

Many organizations and people see cloud native as going to Kubernetes. But cloud native is so much more than the provisioning and orchestration of containers with Kubernetes. It’s a about collaboration, DevOps, internal processes and supply chains, observability/self-healing, continuous delivery/deployment and cloud infrastructure.

There are so many definitions around “cloud native”, that Kamal Arora from Amazon Web Services and others wrote the book “Cloud Native Architecture“, which describes a maturity model. This model helps you to understand, that cloud native is more a journey than only restrictive definition.

Cloud Native Maturity Model

The adoption of cloud services and applying an application-centric design are very important, but the book also mentions that security and scalability rely on automation. And this for example could bring the requirement for Infrastructure as Code (IaC).

In the past, virtualization – moving from bare-metal to vSphere – didn’t force organizations to modernize their applications. The application didn’t need to change and VMware abstracted and emulated the bare-metal server. So, the transition (P2V) of an application was very smooth and not complicated.

And this is what has changed today. We have new architectures, new technologies and new clouds running with different technology stacks. We have Kubernetes as framework, which requires applications to be redesigned for these platforms.

That is the reason why enterprises have to modernize their applications.

One of the “five R’s” mentioned above is the lift and shift approach. If you don’t want or need to modernize some of your applications, but move to the public cloud in an easy, fast and cost efficient way, have a look at VMware’ hybrid cloud extension (HCX).

In this article I focus more on the replatform and refactor approaches in a multi-cloud world.

Kubernetize and productize your applications

Assuming that you also define Kubernetes as the standard to orchestrate your containers where your microservices are running in, usually the next decision would be about the Kubernetes “product” (on-prem, OpenShift, public cloud).

Looking at the current CNCF Cloud Native Landscape, we can count over 50 storage vendors and over 20 networks vendors providing cloud native storage and networking solutions for containers and Kubernetes.

Talking to my customers, most of them mention the storage and network integration as one of their big challenges with Kubernetes. Their concern is about performance, resiliency, different storage and network patterns, automation, data protection/replication, scalability and cloud portability.

Why do organizations need portability?

There are many use cases and requirements that portability (infrastructure independence) becomes relevant. Maybe it’s about a hardware refresh or data center evacuation, to avoid vendor/cloud lock-in, not enough performance with the current infrastructure or it could be about dev/test environments, where resources are deployed and consumed on-demand.

Multi-Cloud Application Portability with VMware Tanzu

To explore the value of Tanzu, I would like to start by setting the scene with the following customer use case:

In this case the customer is following a cloud-appropriate approach to define which cloud is the right landing zone for their applications. They decided to develop new applications in the public cloud and use the native services from Azure and AWS. The customers still has hundreds of legacy applications (monoliths) on-premises and didn’t decide yet, if they want to follow a “lift and shift and then modernize” approach to migrate a number applications to the public cloud.

Multi-Cloud App Portability

But some of their application owners already gave the feedback, that their applications are not allowed to be hosted in the public cloud, have to stay on-premises and need to be modernized locally.

At the same time the IT architecture team receives the feedback from other application owners, that the journey to the public cloud is great on paper, but brings huge operational challenges with it. So, IT operations asks the architecture team if they can do something about that problem.

Both cloud operations for Azure and AWS teams deliver a different quality of their services, changes and deployments take longer with one of their public clouds, they have problems with overlapping networks, different storage performance characteristics and APIs.

Another challenge is the role-based access to the different clouds, Kubernetes clusters and APIs. There is no central log aggregation and no observability (intelligent monitoring & alerting). Traffic distribution and load balancing are also other items on this list.

Because of the feedback from operations to architecture, IT engineering received the task to define a multi-cloud strategy, that solves this operational complexity.

Notes: These are the regular multi-cloud challenges, where clouds are the new silos and enterprises have different teams with different expertise using different management and security tools.

This is the time when VMware’s multi-cloud approach Tanzu become very interesting for such customers.

Consistent Infrastructure and Management

The first discussion point here would be the infrastructure. It’s important, that the different private and public clouds are not handled and seen as silos. VMware’s approach is to connect all the clouds with the same underlying technology stack based on VMware Cloud Foundation.

Beside the fact, that lift and shift migrations would be very easy now, this approach brings two very important advantages for the containerized workloads and the cloud infrastructure in general. It solves the challenge with the huge storage and networking ecosystem available for Kubernetes workloads by using vSAN and NSX Data Center in any of the existing clouds. Storage and networking and security are now integrated and consistent.

For existing workloads running natively in public clouds, customers can use NSX Cloud, which uses the same management plane and control plane as NSX Data Center. That’s another major step forward.

Using consistent infrastructure enables customers for consistent operations and automation.

Consistent Application Platform and Developer Experience

Looking at organization’s application and container platforms, achieving consistent infrastructure is not required, but obviously very helpful in terms of operational and cost efficiency.

To provide a consistent developer experience and to abstract the underlying application or Kubernetes platform, you would follow the same VMware approach as always: to put a layer on top.

Here the solution is called Tanzu Kubernetes Grid (TKG), that provides a consistent, upstream-compatible implementation of Kubernetes, that is tested, signed and supported by VMware.

A Tanzu Kubernetes cluster is an opinionated installation of Kubernetes open-source software that is built and supported by VMware. In all the offerings, you provision and use Tanzu Kubernetes clusters in a declarative manner that is familiar to Kubernetes operators and developers. The different Tanzu Kubernetes Grid offerings provision and manage Tanzu Kubernetes clusters on different platforms, in ways that are designed to be as similar as possible, but that are subtly different.

VMware Tanzu Kubernetes Grid (TKG aka TKGm)

Tanzu Kubernetes Grid can be deployed across software-defined datacenters (SDDC) and public cloud environments, including vSphere, Microsoft Azure, and Amazon EC2. I would assume, that the Google Cloud is a roadmap item.

TKG allows you to run Kubernetes with consistency and makes it available to your developers as a utility, just like the electricity grid. TKG provides the services such as networking, authentication, ingress control, and logging that a production Kubernetes environment requires.

This TKG version is also known as TKGm for “TKG multi-cloud”.

VMware Tanzu Kubernetes Grid Service (TKGS aka vSphere with Tanzu)

TKGS is the option vSphere admins want to hear about first, because it allows you to turn a vSphere cluster to a platform running Kubernetes workloads in dedicated resources pools. TKGS is the thing that was known as “Project Pacific” in the past.

Once enabled on a vSphere cluster, vSphere with Tanzu creates a Kubernetes control plane directly in the hypervisor layer. You can then run Kubernetes containers by deploying vSphere Pods, or you can create upstream Kubernetes clusters through the VMware Tanzu Kubernetes Grid Service and run your applications inside these clusters.

VMware Tanzu Mission Control (TMC)

In our use case before, we have AKS and EKS for running Kubernetes clusters in the public cloud.

The VMware solution for multi-cluster Kubernetes management across clouds is called Tanzu Mission Control, which is a centralized management platform for the consistency and security the IT engineering team was looking for.

Available through VMware Cloud Services as SaaS offering, TMC provides IT operators with a single control point to provide their developers self-service access to Kubernetes clusters.

TMC also provides cluster lifecycle management for TKG clusters across environment such as vSphere, AWS and Azure.

It allows you to bring the clusters you already have in the public clouds or other environments (with Rancher or OpenShift for example) under one roof via the attachment of conformant Kubernetes clusters.

Not only do you gain global visibility across clusters, teams and clouds, but you also get centralized authentication and authorization, consistent policy management and data protection functionalities.

VMware Tanzu Observability by Wavefront (TO)

Tanzu Observability extends the basic observability provided by TMC with enterprise-grade observability and analytics.

Wavefront by VMware helps Tanzu operators, DevOps teams, and developers get metrics-driven insights into the real-time performance of their custom code, Tanzu platform and its underlying components. Wavefront proactively detects and alerts on production issues and improves agility in code releases.

TO is also a SaaS-based platform, that can handle the high-scale requirements of cloud native applications.

VMware Tanzu Service Mesh (TSM)

Tanzu Service Mesh, formerly known as NSX Service Mesh, provides consistent connectivity and security for microservices across all clouds and Kubernetes clusters. TSM can be installed in TKG clusters and third-party Kubernetes-conformant clusters.

Organizations that are using or looking at the popular Calico cloud native networking option for their Kubernetes ecosystem often consider an integration with Istio (Service Mesh) to connect services and to secure the communication between these services.

The combination of Calico and Istio can be replaced by TSM, which is built on VMware NSX for networking and that uses an Istio data plane abstraction. This version of Istio is signed and supported by VMware and is the same as the upstream version. TSM brings enterprise-grade support for Istio and a simplified installation process.

One of the primary constructs of Tanzu Service Mesh is the concept of a Global Namespace (GNS). GNS allows developers using Tanzu Service Mesh, regardless of where they are, to connect application services without having to specify (or even know) any underlying infrastructure details, as all of that is done automatically. With the power of this abstraction, your application microservices can “live” anywhere, in any cloud, allowing you to make placement decisions based on application and organizational requirements—not infrastructure constraints.

Note: On the 18th of March 2021 VMware announced the acquisition of Mesh7 and the integration of Mesh7’s contextual API behavior security solution with Tanzu Service Mesh to simplify DevSecOps.

Tanzu Editions

The VMware Tanzu portfolio comes with three different editions: Basic, Standard, Advanced

Tanzu Basic enables the straightforward implementation of Kubernetes in vSphere so that vSphere admins can leverage familiar tools used for managing VMs when managing clusters = TKGS

Tanzu Standard provides multi-cloud support, enabling Kubernetes deployment across on-premises, public cloud, and edge environments. In addition, Tanzu Standard includes a centralized multi-cluster SaaS control plane for a more consistent and efficient operation of clusters across environments = TKGS + TKGm + TMC

Tanzu Advanced builds on Tanzu Standard to simplify and secure the container lifecycle, enabling teams to accelerate the delivery of modern apps at scale across clouds. It adds a comprehensive global control plane with observability and service mesh, consolidated Kubernetes ingress services, data services, container catalog, and automated container builds = TKG (TKGS & TKGm) + TMC + TO + TSM + MUCH MORE

Tanzu Data Services

Another topic to reduce dependencies and avoid vendor lock-in would be Tanzu Data Services – a separate part of the Tanzu portfolio with on-demand caching (Tanzu Gemfire), messaging (Tanzu RabbitMQ) and database software (Tanzu SQL & Tanzu Greenplum) products.

Bringing all together

As always, I’m trying to summarize and simplify things where needed and I hope it helped you to better understand the value and capabilities of VMware Tanzu.

There are so many more products available in the Tanzu portfolio, that help you to build, run, manage, connect and protect your applications.

If you would like to know more about application and cloud transformation make sure to attend the 45 minute VMware event on March 31 (Americas) or April 1 (EMEA/APJ)!

VMware Carbon Black Cloud Workload – Agentless Protection for vSphere Workloads

VMware Carbon Black Cloud Workload – Agentless Protection for vSphere Workloads

At VMworld 2020 VMware announced Carbon Black Cloud Workload (CBC Workload) as part of their intrinsic security approach.

For me, this was the biggest and most important announcement from this year’s VMworld. It is a new offering, which is relevant for every vSphere customer out there – even the small and medium enterprises, which maybe still just rely on ESXi and vCenter only for their environment.

CBC Workload introduces protection for workloads in private and public clouds. For vSphere, there is no additional agent installation needed, because the Carbon Black sensor (agent) is built into vSphere. That’s why you may hear that this solution is “agentless”.

Carbon Black Cloud Workload Bundles

This cloud-native (SaaS) solution provides foundational workload hardening and vulnerability management combined with prevention, detection and response capabilities to protect workloads running in virtualized private cloud and hybrid cloud environments.

Carbon Black Cloud Workload Protection Bundles

Note: Customers, that are using vSphere and VMware Horizon, should take a look at Workspace Security VDI, which has also been announced at VMworld 2020. A single-vendor solution with the combination of VMware Horizon and Carbon Black.

If you would like to know more about the interoperability of Carbon Black and Horizon, have a look at KB79180.

Carbon Black Cloud Workload Overview

Customers and partners have now the possibility to provide a workload security solution for Windows and Linux virtual machines. The complete system requirements can be found here.

“You can enable Carbon Black in your data center with an easy one-click deployment. To minimize your deployment efforts, a lightweight Carbon Black launcher is made available with VMware Tools. Carbon Black launcher must be available on the Windows and Linux VMs.”

Carbon Black enable via vCenter

Carbon Black Cloud Workload consists of a few key components that interact with each other:

CBC Workload Components

You must first deploy an on-premises OVF/OVA template for the Carbon Black Cloud Workload appliance (4 vCPU, 4GB RAM, 41GB storage) that connects the Carbon Black Cloud to the vCenter Server through a registration process. After the registration is complete, the Carbon Black Cloud Workload appliance deploys the Carbon Black Cloud Workload plug-in and collects the inventory from the vCenter Server.

The plug-in provides visibility into processes and network connections running on a virtual machine.

As a vCenter Server administrator, you want to have visibility of known vulnerabilities in your environment to understand your security posture and schedule maintenance windows for patching and remediation. With the help of vulnerability assessment, you can proactively minimize the risk in your environment. You can now monitor known vulnerabilities from the Carbon Black Cloud Workload plug-in:

vSphere Client Carbon Black

The infosec guys in your company would do the vulnerability assessment from the CBC console:

CBC Vulnerabilities

Carbon Black Cloud Workload protection provides vSphere administrators a full inventory, appliance health and vulnerability reporting from one console, the already well-known vSphere Client.

Carbon Black vSphere Client Summary

Cybersecurity Requirements

According to the NIST Cybersecurity Framework the security lifecycle is made of five functions:

  1. Identify – Cloud & Service Context, Dynamic Asset Visibility, Compliance & Standards, Cloud Risk Management
  2. Protect – Services / API Defined, Cloud Access Control, Network Integrity, Data Security, Change Control & Guardrails
  3. Detect – Cloud-Speed, Inter-connected Services, Events & Anomalies, Continuous Monitoring
  4. Respond – DevOps Collaboration, Real-time Notifications, Automated Actions, Response as Code
  5. Recover – Templates / Code Review, Shift Left / Pipeline, Exceptions and Verification

Workload Security Lifecycle

CBC Workload focuses on identifying the risks with workload visibility and vulnerability management, which are part of the “Workload Essentials” edition.

If you would like to prevent malicious activities to protect your workloads and replace your existing legacy anti-virus (AV) solution, then “Workload Advanced” would be the right edition for you as it includes Next-Gen AV (NGAV).

Behavioral EDR (Endpoint Detection & Response), also part of the “Advanced” bundle, belongs to “detect & respond” of the security lifecycle.

Workload Security for Kubernetes

Carbon Black Guardrails and Runtime Security

You just learned that Carbon Black Cloud gives workload protection for virtualized Windows or Linux virtual machines running on vSphere. What about container security for Kubernetes?

In May 2020 VMware officially closed its acquisition of Octarine, a SaaS security platform for protecting containers and Kubernetes. VMware bought Octarine to enable Carbon Black to secure applications running in Kubernetes.

Traditional security is no longer relevant for the security of Kubernetes, because Kubernetes is so powerful and hence risky, networking is very complex and a total different game, because static IPs and ports are no longer relevant. And you need a new security approach which is compatible with IT’s organizational shift from traditional to a DevSecOps approach.

VMware’s solution covers the whole lifecycle of the application from building the container to the app running in production. It is a two-part solution with the first one being “Guardrails“. It is able to scan container images for vulnerabilities and Kubernetes manifests for any misconfigurations.

Carbon Black Cloud Guardrails Module

The second part is runtime protection. When the workloads are deployed in production, the Carbon Black security agent is able to detect malicious activities.

Carbon Black Cloud Runtime Module 

Let’s have a look at the different features the Kubernetes “Guardrails” provide for each phase of the application:

  • Build: Image vulnerability scanning, Kubernetes configuration hardening
  • Deploy: Policy governance, compliance reporting, visibility and hardening
  • Operate: Threat detection and response, anomaly detection and least privilege runtime, event monitoring

And these were the key capabilities and benefits, which have been mentioned at VMworld 2020 for “Guardrails”:

Carbon Black Kubernetes Guardrails Features

For “runtime” security the following key capabilities and benefits were mentioned:

  • Visibility of network traffic
  • Coverage of workloads and hosts activity
  • Network policy management
  • Threat detection
  • Anomaly detection
  • Egress security
  • SIEM integration

Customers will be able to have visibility of all the workloads running in the local or cloud-native production clusters and how they interact with each other. They will also see which services are exposed to ingress traffic, which services are exiting the cluster and where this egress traffic is going to. It is also going to be visible which communication is encrypted and what type of encryption is used.

Note: The Carbon Black Cloud module for hardening and securing Kubernetes workloads is expected to be generally available until the end of 2020.

The launch of Carbon Black Workload was the first important step to let the intrinsic security vision become more a reality (after VMware acquired Carbon Black). Moving on with Kubernetes and bringing new container security capabilities is going to be the next big move forward, that VMware can become a major security provider. 

Stay tuned for more security announcements!

Additional Resources

If you would like to know more about Carbon Black Cloud Workload and security for Kubernetes, have a look at: