Momentum in the Cloud: Crafting Your Winning Strategy with VMware Cloud

Momentum in the Cloud: Crafting Your Winning Strategy with VMware Cloud

The time is right for VMware Cloud! In the rapidly evolving landscape of modern business, embracing the cloud has become essential for organizations seeking to stay competitive and agile. The allure of increased scalability, cost-efficiency, and flexibility has driven enterprises of all sizes to embark on cloud migration journeys. However, the road to a successful cloud adoption is often coming with challenges. Slow and failed migrations have given rise to what experts call the “cloud paradox,” where the very technology meant to accelerate progress ends up hindering it.

As businesses navigate through this paradox, finding the right strategy to harness the full potential of the cloud becomes paramount. One solution that has emerged as a beacon of hope in this complex landscape is VMware Cloud. With its multi-cloud approach, which is also known as supercloud, VMware Cloud provides organizations the ability to craft a winning strategy that capitalizes on momentum while minimizing the risks associated with cloud migrations.

The Experimental Phase is Over

Is it really though? The experimental phase was an exciting journey of discovery for organizations seeking the potential of multi-cloud environments. Companies have explored different cloud providers, tested a variety of cloud services, and experimented with workloads and applications in the cloud. It allowed them to understand the benefits and drawbacks of each cloud platform, assess performance, security and compliance aspects, and determine how well each cloud provider aligns with their unique business needs.

The Paradox of Cloud and Choice

With an abundance of cloud service providers, each offering distinct features and capabilities, decision-makers can find themselves overwhelmed with options. The quest to optimize workloads across multiple clouds can lead to unintended complexities, such as increased operational overhead, inconsistent management practices/tools, and potential vendor lock-in.

Furthermore, managing data and applications distributed across various cloud environments can create challenges related to security, compliance, and data sovereignty. The lack of standardized practices and tools in a multi-cloud setup can also hinder collaboration and agility, negating the very advantages that public cloud environments promise to deliver.

Multi-Cloud Complexity

(Public) Cloud computing is often preached for its cost-efficiency, enabling businesses to pay for resources on-demand and avoid capital expenditures on physical infrastructure. However, the cloud paradox reveals that organizations can inadvertently accumulate hidden costs, such as data egress fees, storage overage charges, and the cost of cloud management tools. Without careful planning and oversight, the cloud’s financial benefits might be offset by unexpected expenses.

Why Cloud Migrations are Slowing Down

Failed expectations. The first reasons my customers mention are cost and complexity.

While the cloud offers potential cost savings in the long run, the initial investment and perceived uncertainty in calculating the total cost of ownership can deter some organizations from moving forward with cloud migrations. Budget constraints and difficulties in accurately estimating and analyzing cloud expenses lead to a cautious approach to cloud adoption.

One significant factor impeding cloud migrations is the complexity of the process itself. Moving entire infrastructures, applications, and data to the cloud requires thorough planning, precise execution, and in-depth knowledge of cloud platforms and technologies. Many organizations lack the in-house expertise to handle such a massive undertaking, leading to delays and apprehensions about potential risks.

Other underestimated reasons are legacy systems and applications that have been in use for many years and are often deeply ingrained within an organization’s operations. Migrating these systems to the cloud may require extensive reconfiguration or complete redevelopment, making the migration process both time-consuming and resource-intensive.

Reverse Cloud Migrations

While I don’t advertise a case for repatriation, I would like to share the idea that companies should think about workload mobility, application portability, and repatriation upfront. You can infinitely optimize your cloud spend, but if cloud costs start to outpace your transformation plans or revenue growth, it is too late already.

Embracing a Smart Approach with VMware Cloud

To address the cloud paradox and maximize the potential of multi-cloud environments, VMware is embracing the cloud-smart approach. This approach is designed to empower organizations with a unified and consistent platform to manage and operate their applications across multiple clouds.

VMware Cloud-Smart

  • Single Cloud Operating Model: A single operating model that spans private and public clouds. This consistency simplifies cloud management, enabling seamless workload migration and minimizing the complexities associated with multiple cloud providers.
  • Flexible Cloud Choice: VMware allows organizations to choose the cloud provider that best suits their specific needs, whether it is a public cloud or a private cloud infrastructure. This freedom of choice ensures that businesses can leverage the unique advantages of each cloud while maintaining operational consistency.
  • Streamlined Application Management: A cloud-smart approach centralizes application management, making it easier to deploy, secure, and monitor applications across multi-cloud environments. This streamlines processes, enhances collaboration, and improves operational efficiency.
  • Enhanced Security and Compliance: By adopting VMware’s security solutions, businesses can implement consistent security policies across all clouds, ensuring data protection and compliance adherence regardless of the cloud provider.

Why VMware Cloud?

This year I realized that a lot of VMware customers came back to me because their cloud-first strategy did not work as expected. Costs exploded, migrations were failing, and their project timeline changed many times. Also, partners like Microsoft and AWS want to collaborate more with VMware, because the public cloud giants cannot deliver as expected.

Customers and public cloud providers did not see any value in lifting and shifting workloads from on-premises data centers to the public. Now the exact same people, companies and partners (AWS, Microsoft, Google, Oracle etc.) are back to ask for VMware their support, and solutions that can speed up cloud migrations while reducing risks.

This is why I am always suggesting a “lift and learn” approach, which removes pressure and reduces costs.

Organizations view the public cloud as a highly strategic platform for digital transformation. Gartner forecasted in April 2023 that Infrastructure-as-a-Service (IaaS) is going to experience the highest spending growth in 2023, followed by PaaS.

It is said that companies spend most of their money for compute, storage, and data services when using Google Cloud, AWS, and Microsoft Azure. Guess what, VMware Cloud is a perfect fit for IaaS-based workloads (instead of using AWS EC2, Google’s Compute Engine, and Azure Virtual machine instances)!

Who doesn’t like the idea of cost savings and faster cloud migrations?

Disaster Recovery and FinOps

When you migrate workloads to the cloud, you have to rethink your disaster recovery and ransomware recovery strategy. Have a look at VMware’s DRaaS (Disaster-Recovery-as-a-Service) offering which includes ransomware recovery capabilities as well. 

If you want to analyze and optimize your cloud spend, try out VMware Aria Cost powered by CloudHealth.

Final Words

VMware’s approach is not right for everyone, but it is a future-proof cloud strategy that enables organizations to adapt their cloud strategies as business needs to evolve. The cloud-smart approach offers a compelling solution, providing businesses with a unified, consistent, and flexible platform to succeed in multi-cloud environments. By embracing this approach, organizations can overcome the complexities of multi-cloud, unlock new possibilities, and set themselves on a path to cloud success.

And you still get the same access to the native public cloud services.

 

 

What does VMware Cloud Disaster Recovery have in common with Dell PowerProtect?

What does VMware Cloud Disaster Recovery have in common with Dell PowerProtect?

It was at VMware Explore Europe 2022 when I ran into a colleague from Dell who told me about “transparent snapshots” and mentioned that their solution has something in common VMware Cloud Disaster Recovery (VCDR). After doing some research, I figured out that he was talking about the Light Weight Delta (LWD) protocol.

Snapshots

Snapshots are states of a system or virtual machine (VM) at a particular point in time and should not be considered a backup. The data of a snapshot include all files that form a virtual machine – this includes disks, memory, and other devices like network interface cards (vNIC). To create or delete a snapshot of a VM, the VM needs to be “stunned” (quiesce I/Os).

I would say it is common knowledge that a higher number of snapshots negatively impact the I/O performance of a virtual machine. Creating snapshots results in the creation of a snapshot hierarchy with parent-to-child relationships. Every snapshot creates a delta .vmdk file and redirects all inputs/writes to this delta disk file.

VMware vSphere Storage APIs for Data Protection

Currently, a lot of backup solutions use “VMware vSphere Storage APIs for Data Protection” (VADP), which has been introduced in vSphere 4.0 released in 2009. A backup product using VADP can backup VMs from a central backup server or virtual machine without requiring any backup agents. Meaning, backup solutions using VADP create snapshots that are used to create backups based on the changed blocks of a disk (Changed Block Tracking aka CBT). These changes or this delta is then written to a secondary site or storage and the snapshot is removed after.

Deleting a snapshot consolidates the changes between snapshots and previous disk states. Then it writes all the data from the delta disk that contains the information about the deleted snapshot to the parent disk. When you delete the base parent snapshot, all changes merge with the base virtual machine disk.

To delete a snapshot, a large amount of information must be read and written to a disk. This process can reduce the virtual machine performance until the consolidation is complete.

VMware Cloud Disaster Recovery (VCDR)

In 2020, VMware announced the general availability of VMware Cloud Disaster Recovery based on technology from their Datrium acquisition. This new solution extended the current VMware disaster recovery (DR) solutions like VMware Site Recovery, Site Recovery Manager, and Cloud Provider DR solutions.

VMware Cloud Disaster Recovery is a VMware-delivered disaster recovery as a service (DRaaS) offering that protects on-premises vSphere and VMware Cloud on AWS workloads to VMware Cloud on AWS from both disasters and ransomware attacks. It efficiently replicates VMs to a Scale-out Cloud File System (SCFS) that can store hundreds of recovery points with recovery point objectives (RPOs) as low as 30 minutes. This enables recovery for a wide variety of disasters including ransomware. Virtual machines are recovered to a software-defined data center (SDDC) running in VMware Cloud on AWS. VMware Cloud Disaster Recovery also offers fail-back capabilities to bring your workloads back to their original location after the disaster is remediated.

VMware Cloud DR Architecture

Note: Currently, VCDR is only available as an add-on feature to VMware Cloud on AWS. The support for Azure VMware Solution is expected to come next.

To me, VCDR is one of the best solutions from the whole VMware portfolio.

High-Frequency Snapshots (HFS)

One of the differentiators and game-changers are these so-called high-frequency snapshots, which are based on the Light Weight Delta (LWD) technology that VMware developed. Using HFS allows customers to schedule recurring snapshots for every 30 minutes, meaning, that customers can get an Recovery Point Objective (RPO) of 30min!

To enable and use high-frequency snapshots, your environment must be running on vSphere 7.0 U3 or higher.

With HFS and LWD, there is no Changed Block Tracking (CBT), no VADP, and no VM stun. This results in better performance when maintaining these deltas.

Transparent Snapshots by Dell EMC PowerProtect Data Manager (PPDM)

At VMworld 2021, Dell Technologies presented a session called “Protect Your Virtual Infrastructure with Drastically Less Disruption [SEC2764S]” which was about “transparent snapshots” – image backups with near-zero impact on virtual machines, without the need to pause the VM during the backup process. No more backup proxies, no more agents.

Dell Transparent Snapshot Architecture

As with HFS and VCDR, your environment needs to run on vSphere 7.0 U3 and higher.

How does it work?

PowerProtect Data Manager transparent snapshots use the vSphere API for I/O (VAI/O) Filtering framework. The transparent snapshots data mover (TSDM) is deployed in the VMware ESXi infrastructure through a PowerProtect Data Manager VIB. This deployment creates consistent VM backup copies and writes the copies to the protection storage (PowerProtect appliance).

After, this VIB (Data Protection Daemon (DPD) which is part of the VMware ESXi >7.0 U3 image has been installed on the ESXi host) tracks the delta changes in memory and then transfers the delta changes directly to the protection storage.

VMware Data Protection Daemon

Note: PPDM also provides image backup and restore support for VMware Cloud on AWS and Azure VMware Solution, but requires VADP.

Light Weight Delta (LWD)

It seems that LWD has been developed by VMware but there is no publicly available information out there yet. I only found this screenshot as part of this Dell article:

VMware Light Weight Delta

It also seems that Dell is/was the first who could leverage the LWD protocol exclusively but I am sure it will be made available to other VMware partners as well.

A Closer Look at VMware NSX Security

A Closer Look at VMware NSX Security

A customer of mine asked me a few days ago: “Is it not possible to get NSX Security features without the network virtualization capabilities?”. I wrote it already in my blog “VMware is Becoming a Leading Cybersecurity Vendor” that you do not NSX’s network virtualization editions or capabilities if you are only interested in “firewalling” or NSX security features.

If you google “nsx security”, you will not find much. But there is a knowledge base article that describes the NSX Security capabilities from the “Distributed Firewall” product line: Product offerings for NSX-T 3.2 Security (87077).

Believe it or not, there are customers that haven’t started their zero-trust or “micro-segmentation” journey yet. Segmentation is about preventing lateral (east-west) movement. The idea is to divide the data center infrastructure into smaller security zones and that the traffic between the zones (and between workloads) is inspected based on the organization’s defined policies.

Perimeter Defense vs Micro-Segmentation

If you are one of them and want to deliver east-west traffic introspection using distributed firewalls, then these NSX Security editions are relevant for you:

VMware NSX Distributed Firewall

  • NSX Distributed Firewall (DFW)
  • NSX DFW with Threat Prevention
  • NSX DFW with Advanced Threat Prevention

VMware NSX Gateway Firewall

  • NSX Gateway Firewall (GFW)
  • NSX Gateway Firewall with Threat Prevention
  • NSX Gateway Firewall with Advanced Threat Prevention

Network Detection and Response

  • Network Detection and Response (standalone on-premises offering)

Note: If you are an existing NSX customer using network virtualization, please have a look at Product offerings for VMware NSX-T Data Center 3.2.x (86095).

VMware NSX Distributed Firewall

The NSX Distributed Firewall is a hypervisor kernel-embedded stateful firewall that lets you create access control policies based on vCenter objects like datacenters and clusters, virtual machine names and tags, IP/VLAN/VXLAN addresses, as well as user group identity from Active Directory.

If a VM gets vMotioned to another physical host, you do not need to rewrite any firewall rules.

The distributed nature of the firewall provides a scale-out architecture that automatically extends firewall capacity when additional hosts are added to a data center.

Should you be interested in “firewalling” only, want to implement access controls for east-west traffic (micro-segmentation) only, but do not need threat prevention (TP) capabilities, then “NSX Distributed Firewall Edition” is perfect for you.

So, which features does the NSX DFW edition include?

The NSX DFW edition comes with these capabilities:

  • L2 – L4 firewalling
  • L7 Application Identity-based firewalling
  • User Identity-based firewalling
  • NSX Intelligence (flow visualization and policy recommendation)
  • Aria Operations for Logs (formerly known as vRealize Log Insight)

What is the difference between NSX DFW and NSX DFW with TP?

With “NSX DFW with TP”, you would get the following additional features:

  • Distributed Intrusion Detection Services (IDS)
  • Distributed Behavioral IDS
  • Distributed Intrusion Prevention Service (IPS)
  • Distributed IDS Event Forwarding to NDR

Where does the NSX Distributed Firewall sit?

This question comes up a lot because customers understand that this is not an agent-based solution but something that is built into the VMware ESXi hypervisor.

The NSX DFW sits in the virtual patch cable, between the VM and the virtual distributed switch (VDS):

NSX Distributed Firewall

Note: Prior to NSX-T Data Center 3.2, VMs must have their vNIC connected to an NSX overlay or VLAN segment to be DFW-protected. In NSX-T Data Center 3.2, distributed firewall protects workloads that are natively connected to a VDS distributed port group (DVPG).

VMware NSX Gateway Firewall

The NSX Gateway Firewall extends the advanced threat prevention (ATP) capabilities of the NSX Distributed Firewall to physical workloads in your private cloud. It is a software-only, L2 – L7 firewall that includes capabilities such as IDS and IPS, URL filtering and malware detection as well as routing and VPN functionality.

If you are not interested in ATP capabilities yet, you can start with the “NSX Gateway Firewall” edition. What is the difference between all NSX GFW editions?

VMware NSX GFW Editions

The NSX GFW can be deployed as a virtual machine or with an ISO image that can run on a physical server and it shares the same management console as the NSX Distributed Firewall.

API Security with Spring Cloud Gateway and Tanzu Service Mesh

API Security with Spring Cloud Gateway and Tanzu Service Mesh

Today, more than ever, both humans and machines consume or process data. We, humans, consume data through multiple applications that are hosted in different clouds from different devices like smartphones, laptops, and tablets. Companies are building applications that need to look good and work well on any platform/device.

At the same time, developers are building new applications following cloud-native principles. A cloud-native architecture is a design pattern for applications that are built for the cloud. Most cloud-native apps are organized as microservices which are used to break up larger applications into loosely coupled units that can be managed by smaller teams. Resilience and scale are achieved through horizontal scaling, distributed processing, and automated placement of failed components.

Different people have a different understanding of “cloud-native” and the chances are high that you will get different answers. Let us look at the official definition from CNCF:

“Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.”

12-Factor App

A widely accepted methodology for building cloud-based applications is the “Twelve-Factor Application”. It uses declarative formats for automation to minimize time and costs. It should offer maximum portability between execution environments and be suitable for the deployment on modern cloud platforms. The 12-factor methodology can be applied with any programming language and may use any combination of backing servers (caching, queuing, databases).

Interestingly, we now see other factors like API-first, telemetry, and security complementing this list.

While doing research for my book about “workload mobility and application portability”, I saw the term “API-first” many times.

Then I started to remember that VMware acquired Mesh7 a while ago and they announced Tanzu Service Mesh Enterprise last year at VMworld Europe (now known as VMware Explore). API security was even one of their main topics during the networking & security solutions keynote presented by Tom Gillis.

VMworld 2021 API Security

That is why I thought it is time to better understand this topic and write a piece about APIs. Let us start with some basics first.

What is an API?

An application programming interface (API) is a way for two or more software components to communicate with each other using a set of defined protocols and definitions. APIs are here to make the developer’s life easier.

I bet you have seen parts of Google Maps already embedded in different websites when you were looking for a specific business or restaurant location. Most websites and developers would use Google Maps in this case, because it just makes sense for us, right? That is why Google exposes the Google Maps API so developers can embed Google Maps objects very easily in a standardized way. Or have you seen anyone who wants to develop their own version of Google Maps?

In the case of enterprises, APIs are a very elegant way to share data with customers or other external users. Such public APIs like Google Maps APIs can be used by partners who then can access your data. And we all know that data is the new oil. Companies can make a lot of money today by sharing their data.

Even when using private APIs (internal use only), you decide who can access your API and data. This is one of the reasons why API security and API management become more important. You want to provide secure access when sensitive data is being exposed.

What is an API Gateway?

For microservices-based apps, it makes sense to implement an API gateway, because it can act as a single entry point for all API calls made to your system. And it doesn’t matter if your system/application is hosted on-premises, in the public cloud, or a combination of both. The API gateway takes care of the request (API call) and returns the requested data.

API Gateway Diagram

Image Source: https://www.tibco.com/reference-center/what-is-an-api-gateway 

API gateways can also handle other tasks like authentication, rate management, and statistics. This is important for example when you want to monetize some of your APIs by offering a service to consumers or other companies.

What is Spring Cloud Gateway for VMware Tanzu?

Spring Cloud Gateway for VMware Tanzu provides a simple way to route internal and external API requests to application services that expose APIs. This solution is based on the open-source Spring Cloud Gateway project and provides a library for building API gateways on top of Spring and Java.

Because it is intended that Spring Cloud Gateway sits between a requester and the resource that is being requested, it is in the position to intercept, analyze and modify requests.

Revitalize Legacy Apps with APIs

Before we had microservices, there were monolithic applications. An all-in-one application architecture, where all services are installed on the same virtual machine and depend on each other.

There are multiple reasons why such a monolith cannot be broken up into smaller pieces and modernized. Sometimes it’s not (technically) possible, not worth it, or it just takes too long. Hence many companies still use such monolithic (legacy) applications. The best example here is the mainframe which often still runs business-critical applications.

I always thought that my customers only have two options when modernizing applications:

  • Start from scratch (throw the old app away)
  • Refactor/Rewrite an application

Rewriting an application needs time and costs money. Imagine that you would refactor 50 of your applications, split these monoliths up in microservices, connect these hundreds or thousands of microservices, and at the same time must take care of security (e.g., vulnerabilities).

So, what are you going to do now?

APIs seem to provide a very cost-effective way to integrate some of the older applications with newer ones. With this approach, one can abstract away the data and services from the underlying (legacy) application infrastructure. APIs can extend the life of a legacy application and could be the start of a phased application modernization approach.

Tanzu Service Mesh Enterprise

At the moment, we only have an API gateway that sits in front of our microservices. Multiple (micro)services in an aggregated fashion create the API you want to expose to your internal or external customers. The question now is, how you do plan to expose this API when your microservices are distributed over one or more private or public clouds?

When we talk about APIs, we talk about data in motion. That is why we must secure this data that is sent from its source to any location. And you want to secure the application and data without increasing the application latency and decreasing the user’s experience.

Now it makes sense to me why VMware acquired Mesh7 in March 2021 and announced Tanzu Service Mesh Enterprise about 6 months later with these additional features:

  • API Security. API security is achieved through API vulnerability detection and mitigation, API baselining, and API drift detection (including API parameters and schema validation)
  • Personally Identifiable Information (PII) segmentation and detection. PII data is segmented using attribute-based access control (ABAC) and is detected via proper PII data detection and tracking, and end-user detection mechanisms.
  • API Security Visibility. API security is monitored using API discovery, security posture dashboards, and rich event auditing.

Final Words

APIs are used to connect different applications. They are also used to aggregate services or functions that can be consumed by other businesses or partners. Modern and containerized applications bring a large number of APIs with them, that can be hosted in any cloud.

With Spring Cloud Gateway and Tanzu Service Mesh Enterprise, VMware can deliver application connectivity services that enable improved developer experience and more secure operations.

It took me almost a year to realize the strengths of these (combined) products and why VMware for example acquired Mesh7. But it makes sense to me now. Even I do not completely understand all the key features of Spring Cloud Gateway and Tanzu Service Mesh.

VMware Explore US 2022 – VMware Projects and Day 2 Announcements

VMware Explore US 2022 – VMware Projects and Day 2 Announcements

Last year at VMworld 2021, VMware mentioned and announced a lot of (new) projects they are working on. What happened to them and which new VMware projects have been mentioned this year at VMware Explore so far?

Project Ensemble – VMware Aria Hub

VMware unveiled their unified multi-cloud management portfolio called VMware Aria, which provides a set of end-to-end solutions for managing the cost, performance, configuration, and delivery of infrastructure and cloud native applications.

VMware Aria is anchored by VMware Aria Hub (formerly known as Project Ensemble), which provides centralized views and controls to manage the entire multi-cloud environment, and leverages VMware Aria Graph to provide a common definition of applications, resources, roles, and accounts.

VMware Aria Graph provides a single source of truth that is updated in near-real time. Other solutions on the market were designed in a slower moving era, primarily for change management processes and asset tracking. By contrast, VMware Aria Graph is designed expressly for cloud-native operations.

VMware Explore US 2022 Session: A Unified Cloud Management Control Plane – Update on Project Ensemble [CMB2210US]

Project Monterey – DPU-based Acceleration for NSX

Last year introduced as Project Monterey and in technology preview, VMware announced the GA version of Monterey called DPU-based Acceleration for NSX yesterday.

Project Arctic – vSphere+ and vSAN+

Project Arctic has been introduced last year as a Technology Preview and was described as “the next step in the evolution of vSphere in a multi-cloud world”. What has started with the idea of bringing VMware Cloud services closer to vSphere, has evolved to a even more interesting and enterprise-ready version called vSphere+ and vSAN+. It includes developer services that consist of the Tanzu Kubernetes Grid runtime, Tanzu Mission Control Essentials and NSX Advanced Load Balancer Essentials. VMware is going to add more and more VMware Cloud add-on services in the future. Additionally, VMware even introduced VMware Cloud Foundation+.

Project Iris – Application Transformer for VMware Tanzu

VMware mentioned Project Iris very briefly last year at VMworld. In February 2022, Project Iris became generally available and is since then known as Application Transformer for VMware Tanzu.

Project Northstar

At VMware Explore on day 1, VMware introduced Project Northstar, which will provide customers a centralized cloud console that gives them instant access to networking and security services, such as network and security policy controls, Network Detection and Response (NDR), NSX Intelligence, Advanced Load Balancing (ALB), Web Application Firewall (WAF), and HCX. Project Northstar will be able to apply consistent networking and security policies across private cloud, hybrid cloud, and multi-cloud environments.

Graphical user interface Description automatically generated

VMware Explore US 2022 Session: Multi-Cloud Networking and Security with NSX [NETB2154US]

Project Watch

At VMware Explore on day 1,VMware unveiled Project Watch, a new approach to multi-cloud networking and security that will provide advanced app-to-app policy controls to help with continuous risk and compliance assessment. In technology preview, Project Watch will help network security and compliance teams to continuously observe, assess, and dynamically mitigate risk and compliance problems in composite multi-cloud applications.

Project Trinidad

Also announced at VMware Explore day 1 and further explained at day 2, Project Trinidad extends VMware’s API security and analytics by deploying sensors on Kubernetes clusters and uses machine learning with business logic inference to detect anomalous behavior in east-west traffic between microservices.

Project Narrows

Project Narrows introduces a unique addition to Harbor, allowing end users to assess the security posture of Kubernetes clusters at runtime. Images previously undetected, will be scanned at the time of introduction to a cluster, so vulnerabilities can now be caught, images may be flagged, and workloads quarantined.

Project Narrows adding dynamic scanning to your software supply chain with Harbor is critical. It allows greater awareness and control of your running workloads than the traditional method of simply updating and storing workloads.

VMware is open sourcing the initial capabilities of Project Narrows on GitHub as the Cloud Native Security Inspector (CNSI) Project.

VMware Explore US 2022 Session: Running App Workloads in a Trusted, Secure Kubernetes Platform [VIB1443USD]

Project Keswick

Also introduced on day 2, Project Keswick is about simplifying edge deployments at scale. It comes as an xLabs project coming out of the Advanced Technology Group in VMware’s Office of the CTO.

Bild

A Keswick deployment is entirely automated and uses Git as a single source of truth for a declarative way to manage your infrastructure and applications through desired state configuration enabled by GitOps. This ensures the infrastructure and applications running at the edge are always exactly what they need to be.

VMware Explore US 2022 Session: Edge Computing: What’s Next? [VIB1457USD]

Project Newcastle

At VMworld 2021, VMware talked the first time (I think) about cryptographic agility and even showed a short demo of a Post Quantum Cryptography (PQC) enabled Unified Access Gateway (using a proxy-based approach): 

Diagram of an HAProxy with TLS Termination and Quantum-Safe Cipher Support as a reverse proxy to communicate with a quantum-safe web browser.

At VMware Explore 2022 day 2, VMware demonstrated what they believe to be the world’s first quantum-safe multi-cloud application!

VMware developed and presented Project Newcastle, a policy-based framework enabling and orchestrating cryptographic transition in modern applications.

Integrated with Tanzu Service Mesh, Project Newcastle gives users greater insight into the cryptography in their applications. But that’s not all — as a platform for cryptographic agility, Project Newcastle automates the process of reconfiguring an application’s cryptography to comply with user-defined policies and industry standards.

Closing Comment

Which VMware projects excite you the most? I’m definitely going with Project Ensemble (Aria Hub) and Project Newcastle!

VMware Explore US 2022 – Summary of Day 1 Announcements

VMware Explore US 2022 – Summary of Day 1 Announcements

VMworld is now VMware Explore and is currently happening in San Francisco! This is a consolidated of the announcements from day 1 (August 30th, 2022).

VMware Introduces vSphere 8, vSAN 8 and VMware Cloud Foundation+

VMware today introduced VMware vSphere 8 and VMware vSAN 8—major new releases of VMware’s compute and storage solutions.

vSphere 8 – vSphere 8 introduces vSphere on DPUs, previously known as Project Monterey. In close collaboration with technology partners AMD, Intel and NVIDIA as well as OEM system partners Dell Technologies, Hewlett Packard Enterprise and Lenovo, vSphere on DPUs will unlock hardware innovation helping customers meet the throughput and latency needs of modern distributed workloads. vSphere will enable this by offloading and accelerating network and security infrastructure functions onto DPUs from CPUs.

ESXi on DPU

vSphere 8 will dramatically accelerate AI and machine learning applications by doubling the virtual GPU devices per VM, delivering a 4x increase of passthrough devices, and supporting vendor device groups which enable binding of high-speed networking devices and the GPU.

vSAN 8: vSAN 8 introduces breakthrough performance and hyper-efficiency. Built from the ground up, the new vSAN Express Storage Architecture (ESA) will enhance the performance, storage efficiency, data protection and management of vSAN running on the latest generation storage devices. vSAN 8 will provide customers with a future ready infrastructure that supports modern TLC storage devices and delivers up to a 4x performance boost.

VMware Cloud Foundation+ – VMware introduces a new cloud-connected architecture for managing and operating full stack HCI in data centers. Built on vSphere+ and vSAN+, VMware Cloud Foundation+ will add a new cloud-connected architecture for managing and operating full-stack HCI in our data center or co-location facility.

VMware Cloud Foundation+ will deliver new admin, developer and hybrid cloud services through a simplified subscription model and keyless entitlement. VMware Cloud Foundation 4.5 will enable VMware Cloud Foundation+ by adding vSphere+ and vSAN+, plus a cloud gateway that provides access to the VMware Cloud Console as part of the full stack architecture.

VMware Cloud for Hyperscalers

VMC on AWS – Amazon Elastic Compute Cloud (Amazon EC2) I4i instances for I/O-intensive Workloads: Powered by 3rd generation Intel® Xeon® Scalable processors (Ice Lake), Amazon EC2 instances help deliver better workload support and delivery, lower TCO, and increased scalability and application performance. Compared to I3, the I4i instances provide nearly twice the number of physical cores, twice the memory, three times the storage capacity, and three times the network bandwidth.

Amazon FSx for NetApp ONTAP Integration Availability – as a native AWS cloud storage service that is certified as a supplemental datastore for VMware Cloud on AWS, FSx for ONTAP offers fully managed shared storage built on the familiar NetApp ONTAP file system trusted by VMware customers running on premises today. Customers can now use FSx for ONTAP as a simple and elastic datastore for VMware Cloud on AWS, enabling them to scale storage up or down independently from compute while paying only for the resources they need.

VMware Cloud Flex Storage Availability – A new VMware-managed and natively integrated cloud storage and data management solution that offers supplemental datastore-level access for VMware Cloud on AWS. With just a few clicks in the VMware Cloud Console, customers can scale their storage environment without adding hosts, and elastically adjust storage capacity up or down as needed for every application. Customers also benefit from a simple, pay-as-you-consume pricing model. Together with VMware vSAN, VMware Cloud Flex Storage offers flexibility and customer value in terms of resilience, performance, scale, and cost in the cloud.

VMware Cloud Flex Compute – “Preview” of a new cloud compute model that will help customers get started faster with VMware Cloud on AWS. With this new model, VMware introduces a “resource-defined” cloud compute model in place of “hardware-defined” compute instance model which will provide customers higher flexibility, elasticity, and speed to better meet cost and performance requirements of enterprise applications. It will help customers get started faster with VMware Cloud on AWS by using smaller consumable units.

Azure VMware Solution – Customers will be able to purchase Azure VMware Solution as part of VMware Cloud Universal, a flexible purchasing and consumption program for executing multi-cloud and digital transformation strategies. VMware Cloud Director Service for Azure VMware Solution is also now available in Public Preview.

Google Cloud VMware Engine – VMware announced VMware Tanzu Standard edition on Google Cloud VMware Engine to help simplify Kubernetes adoption and management.

Oracle Cloud VMware Solution – New features and capabilities with VMware Tanzu Standard Edition and introduced support for single host SDDCs for non-production workloads.

VMware Cloud Management – VMware Aria

VMware unveiled a multi-cloud management portfolio called VMware Aria, which provides a set of end-to-end solutions for managing the cost, performance, configuration, and delivery of infrastructure and cloud native applications.

VMware Aria is a new brand for the vRealize components, Tanzu Observability by Wavefront and CloudHealth unified under one umbrella, one name.

The VMware products and services within the VMware Aria portfolio are:

  • VMware Aria Automation (formerly, vRealize Automation)
  • VMware Aria Operations (formerly, vRealize Operations)
  • VMware Aria Operations for Networks (formerly, vRealize Network Insight)
  • VMware Aria Operations for Logs (formerly, vRealize Log Insight)
  • VMware Aria Operations for Secure Clouds (formerly, CloudHealth Secure State)
  • VMware Aria Cost powered by CloudHealth (formerly, CloudHealth)
  • VMware Aria Operations for Applications (formerly VMware Tanzu Observability)
  • VMware Skyline

VMware Aria Products

VMware Aria is anchored by VMware Aria Hub (formerly known as Project Ensemble), which provides centralized views and controls to manage the entire multi-cloud environment, and leverages VMware Aria Graph to provide a common definition of applications, resources, roles, and accounts.

VMware Aria Graph provides a single source of truth that is updated in near-real time. Other solutions on the market were designed in a slower moving era, primarily for change management processes and asset tracking. By contrast, VMware Aria Graph is designed expressly for cloud-native operations.

VMware Aria provides features and functions that span management disciplines and clouds to deliver unique value for multi-cloud governance, cross-cloud migration, and actionable business insights. In addition, there are three new end-to-end management services built on top of VMware Aria Hub and VMware Aria Graph:

  • VMware Aria Guardrails – Automate enforcement of cloud guardrails for networking, security, cost, performance, and configuration at scale for multi-cloud environments with an everything-as-code approach
  • VMware Aria Migration – Accelerate and simplify the multi-cloud migration journey by automating assessment, planning, and execution in conjunction with VMware HCX
  • VMware Aria Business Insights – Discern relevant business insights from full-stack event correlation leveraging AI/ML analytics

Networking and Security

Project Northstar – Project Northstar is a SaaS-based network and security offering that will empower NSX customers with a set of on-demand multi-cloud networking and security services, end-to-end visibility, and controls. Customers will be able to use a centralized cloud console to gain instant access to networking and security services, such as network and security policy controls, Network Detection and Response (NDR), NSX Intelligence, Advanced Load Balancing (ALB), Web Application Firewall (WAF), and HCX. It will support both private cloud and VMware Cloud deployments running on public clouds and enable enterprises to build flexible network infrastructure that they can spin up and down in minutes.

Graphical user interface Description automatically generated

DPU-based Acceleration for NSX – Formerly known as Project Monterey, VMware announced that starting with NSX 4.0 and vSphere 8.0, customers can leverage DPU-based acceleration using SmartNICs. Offloading NSX services to the DPU can accelerate networking and security functions without impacting the host CPUs, addressing the needs of modern applications and other network-intensive and latency-sensitive applications.

Image of a SmartNIC

Project Trinidad – Available as tech preview, Project Trinidad extends VMware’s API security and analytics by deploying sensors on Kubernetes clusters and uses machine learning with business logic inference to detect anomalous behavior in east-west traffic between microservices.

Project Watch – VMware unveiled Project Watch, a new approach to multi-cloud networking and security that will provide advanced app-to-app policy controls to help with continuous risk and compliance assessment. In technology preview, Project Watch will help network security and compliance teams to continuously observe, assess, and dynamically mitigate risk and compliance problems in composite multi-cloud applications.

Additionally, VMware NSX Advanced Load Balancer adds new bot management capabilities to help enterprises address threats quickly and efficiently, providing enhanced multi-layer application protection with existing Web Application Firewall, DDoS protection, and API security.

Edge

VMware Edge Compute Stack 2.0 – VMware announced the VMware Edge Compute Stack v1.0 last year and is now adding more features and functionalities optimized for different use cases at the enterprise edge – shipped with vSphere 8 and Tanzu Kubernetes Grid 2.0. VMware, for the first time, will introduce initial support for non-x86 processor-based specialized small form factor edge platforms to simultaneously run IT/OT workloads and workflows on a single stack.

 

VMware Private Mobile Network (Beta) – Delivered by service providers, this new managed service offering provides enterprises with private 4G/5G mobile connectivity in support of edge-native applications. VMware will empower partners with a single PMN orchestrator to operate multi-tenant private 4G/5G networks with an enterprise-grade solution. 

Modern Applications (VMware Tanzu)

Tanzu Application Platform – VMware pre-announced new Tanzu Application Platform (TAP) 1.3 capabilities like the availability on RedHat OpenShift or the support for air-gapped installations for regulated and disconnected environments.

Tanzu Mission Control – Finally, VMware announced the preview for lifecycle management of Amazon Elastic Kubernetes Service (EKS) clusters, which enables direct provisioning and management of EKS clusters, which is awesome! I suppose we can expect the support for Azure Kubernetes Service (AKS) also coming very soon.

Tanzu Kubernetes Grid – With the release of TKG 2.0, VMware now includes a unified experience for applications running on any cloud. In the near future, Tanzu Kubernetes Grid 2.0 should support both Supervisor-based and VM-based management cluster models. On vSphere 8, both Supervisor-based and VM-based models will be supported, and VM-based management clusters will continue to be available on previous versions of vSphere and public clouds. This means in other words, that VMware continues with their “TKGS” and “TKGm” flavors.

Tanzu Service Mesh – Also pre-announced, VMware is adding several enterprise and application resiliency capabilities into Tanzu Service Mesh:

  • Support for customer-owned enterprise certificate authority through integration with Venafi
  • Improved security with enterprise-approved container image registries, data services support, external services support
  • and a global SLO dashboard that allows developers and site-reliability engineers to view all managed service SLOs, helping with capacity planning, troubleshooting, and understanding the health of their applications.

Read more about all the Tanzu announcements here.

Anywhere Workspace

VMware unveiled how it is advancing self-configuring, self-healing and self-securing outcomes across four key technology areas that are delivered by the Anywhere Workspace platform:

  • VDI and DaaS
  • Digital Employee Experience
  • Unified Endpoint Management
  • Security

VMware is introducing a next generation of VMware Horizon Cloud that will enable multi-cloud agility and flexibility. This new release represents a major update to Horizon Cloud on Microsoft Azure that can dramatically simplify the infrastructure that needs to be deployed inside customer environments, reducing infrastructure costs in some cases by over 70% while increasing scalability and reliability of VMware’s DaaS platform.

20K user infrastructure cost comparison

Workspace ONE UEM’s Freestyle Orchestrator will be expanding to include support for mobile devices.

Workspace ONE support for Windows OS multi-user mode is now available in Tech Preview for Azure Active Directory-based deployments; and it will soon be extended to Active Directory-based deployments.

VMware also announced the coming tech preview of Workspace ONE Cloud Marketplace, which will feature dashboards, widgets, reports, Freestyle Orchestrator workflows, and other resources that can be imported to help customers adopt additional solutions.

Horizon Managed Desktop –  I am very excited about this announcement, because it will provide a managed service offering that takes care of lifecycle services, support, and more, on top of a customer-provided infrastructure. This will help customers that don’t have in-house experts get to value with VDI faster.

Availability

VMware Cloud Foundation+, VMware vSphere 8, VMware vSAN 8 and VMware Edge Compute Stack 2.0 are all expected to be available by October 28, 2022 (the close of VMware’s Q3 FY23). VMware Private Mobile Network is expected to be available in beta in VMware’s Q3 FY23.

Closing Comment

Not bad for the first day, right? Stay tuned for more exciting VMware Explore announcements!