10 Things You Didn’t Know About vSphere+

10 Things You Didn’t Know About vSphere+

VMware vSphere+ is the next evolution that brings the benefits of the cloud to on-premises workloads. It transforms existing on-prem deployments into SaaS-enabled infrastructures. This allows customers to access new innovations and cloud services much faster.

I mention 4 important things to customers when they ask about vSphere+:

  • You can purchase a new subscription or upgrade your existing licenses to subscription
    • Available in 1, 3, and 5-year terms
    • Per-Core metric with a 16 core minimum per CPU (perpetual vSphere licenses use a per-socket metric with a 32 core maximum)
  • You still manage your ESXi hosts the same way. vCenter updates can be managed from the VMware Cloud console.
    • You can deploy an unlimited number of vCenters (vCenter Standard)
  • vSphere+ includes vSphere all features of the vSphere Enterprise+ edition and allows keyless management of your vSphere and vSAN infrastructure
  • You get central management and insights through the VMware Cloud Console, and add-on services

Diagram showing the architecture for vSphere+

That is vSphere+ in a nutshell. But there is much more. With this new service and connection to VMware Cloud services, customers start to ask a lot of questions. 😉

1) Which parts of the Tanzu portfolio are included in vSphere+?

vSphere+ comes with so-called developer services that include:

2) What is the Cloud Consumption Interface (CCI)?

The Cloud Consumption Interface is included with vSphere+ (powered by Aria Automation, formerly known as vRealize Automation) and gives consumers a consistent API and CLI to interact with all their cloud and IaaS operations. This means you can connect to all your Supervisor clusters from a graphical web console.

Note: Do you remember the Project Cascade announcement at VMworld 2021? That’s CCI.

3) What if I have 20 cores and want to license only 16 cores of them?

Let us say that you have 20 cores and disabled 4 of them in BIOS, vSphere+ would only see and activate/subscribe 16 cores only. This is a supported and valid configuration option that you don’t have to subscribe additional 16 cores for only 4 physical cores.

But it is recommended that you activate all the cores during a subscription upgrade to set the correct baseline for the future. If you never plan to activate those 4 leftover cores, then go ahead and license only 16 cores for this CPU.

4) What if I bought VMware Cloud Foundation or vCloud Suite already?

vCloud Suite (vCS) customers can upgrade their existing perpetual license to subscription with vCloud Suite+ (vCS+).

vCloud Suite+ Editions

Existing VCF customers should have a look at VCF+.

5) What is VMware Cloud Foundation+?

VMware Cloud Foundation+ (VCF+) is generally available since October 2022 starting from VCF 4.5 or higher. The difference with vSphere+ is, that VCF+ connects the vCenter Cloud Gateway to the SDDC Manager instead of vCenter.

VMware Cloud Foundation+

The following components are included in VCF+:

  • vSphere+
  • vSAN+
  • NSX term license
  • SDDC Manager
  • Aria Universal Suite Enterprise edition (formerly known as vRealize Cloud Universal)
  • Tanzu Standard
  • Keyless entitlements (only for vSphere+ and vSAN+)

VMware Cloud Foundation+ comes in three different editions:

  • VCF+ Standard
  • VCF+ Advanced
  • VCF+ Enterprise

Note: vCenter Standard is included in vSphere+. This means that vCenter is part of VCF+ as well.

6) What if I cannot connect to the cloud yet or have an air-gapped environment?

If you are not ready yet or are not allowed to connect your environment to a cloud solution like this, you have the following alternatives for the so-called “disconnected” use cases (with term licenses):

  • vSphere Subscription (sometimes called vSphere-S)
  • vCloud Suite Subscription (vCS-S)
  • VMware Cloud Foundation Subscription (VCF-S)

Important: You cannot mix perpetual and VCF+ instances. The same is true for VCF-S and VCF+.

Note: VCF-S can be upgraded to VCF+ but you cannot go from VCF+ to VCF-S.

7) What if I lose my connection to the cloud?

No problem! If you lose your connection to the VMware Cloud, only access to cloud services and the cloud console will be affected. vCenter instances, ESXi hosts, and workloads will continue to run normally and can be managed from vCenter (through the vSphere client). This is true for vSphere+ and VCF+.

8) How many vCenters can be connected to a vCenter Cloud Gateway?

Currently, a vCenter Cloud Gateway (VCG) supports up to 8 medium vCenters. VCF+ customers need to deploy a gateway per VCF instance.

vCenter Cloud Gateway

Note: VMware periodically auto-updates vSphere+ and vCenter Cloud Gateway whenever an update is available. These auto-updates are not applicable for your vCenter Server. You must manually update the vCenter Server whenever an update is available.

9) Can I mix vSphere+ with vSAN perpetual licenses?

Yes, you can continue to use your vSAN perpetual licenses with vSphere+. But as you would expect, you should not mix vSAN perpetual and vSAN+ subscriptions.

10) What about other vSphere+ and vSAN editions?

As I mentioned, vSphere+ includes vSphere Enterprise+ features – vSAN+ has vSAN Enterprise features included.

We can expect that VMware is going to introduce vSphere+ Standard, vSAN+ Standard and vSAN+ Advanced soon. 

Want to know more?

Here are a few additional resources:

 

VMware Explore Europe 2022 Major Announcements

VMware Explore Europe 2022 Major Announcements

VMware Explore Europe 2022 is history. This year felt different and very special! Rooms were fully booked, and people were queuing up in the hallways. The crowd had a HUGE interest in technical sessions from known speakers like Cormac Hogan, Frank Denneman, Duncan Epping, William Lam, and many more!

Compared to VMware Explore US, there were not that many major announcements, but I thought it might be helpful again to list the major announcements, that seem to be the most interesting and relevant ones.

VMware Aria Hub Free Tier

For me, the biggest and most important announcement was the Aria Hub free tier. I am convinced that Aria Hub will be the next big thing for VMware and I am sure that it will change how the world manages a multi-cloud infrastructure.

VMware Aria Hub is a multi-cloud management platform that unifies the management disciplines of cost, performance, configuration, and delivery automation with a common control plane and data model for any cloud, any platform, any tool, and every persona. It helps you align multiple teams and solutions on a common understanding of resources, relationships, historical changes, applications, and accounts, fundamental to managing a multi-cloud environment.

The new free tier enables customers to inventory, map, filter, and search resources from up to two of their native public cloud accounts, currently from either AWS or Azure. It also helps you understand the relationships of your resources to other resources, policies, and other key components in your public cloud and Kubernetes environments. WOW!

Aria Hub Free Tier Announcement: https://blogs.vmware.com/management/2022/11/announcing-vmware-aria-hub-free-tier.html 

Aria Hub Free Tier Technical Overview: https://blogs.vmware.com/management/2022/11/aria-hub-free-tier-technical-overview 

If you want to sign up for the free tier, please follow this link: https://www.vmware.com/learn/1732750_REG.html 

Tanzu Mission Control On-Premises

Many customers asked for it, it is coming! Tanzu Mission Control (TMC) will become available on-premises for sovereign cloud partners/providers and enterprise customers! 

Bild

There is a private beta coming. Hence, I cannot provide more information for now.

Tanzu Kubernetes Grid 2.1

At VMware Explore US 2022, VMware announced Tanzu Kubernetes Grid (TKG) 2.0, and at Explore Europe 2022, they announced TKG 2.1, which adds support for Oracle Cloud Infrastructure (OCI). Additionally, it will now also have the option of leveraging VMs as the management cluster. Each will be familiar, but now they both support a single, unified way of cluster creation using a new API called ClusterClass.

TKG 2.1 Announcement: https://tanzu.vmware.com/content/blog/tanzu-kubernetes-grid-2-1 

Tanzu Service Mesh Advanced Enhancements

VMware unveiled new enhancements for Tanzu Service Mesh (TSM) as well, which are going to bring new capabilities that would provide VM discovery and integration into the mesh, providing the ability to combine VMs and containers in the same service mesh for secure communications and to apply consistent policy.

VMware Cloud on Equinix Metal (VMC-E)

The last thing I want to highlight is the VMC-E announcement. It is a combination of VMware Cloud IaaS with Equinix Metal hardware as-a-service, which can be deployed in over 30 Equinix global data centers.

VMware Cloud on Equinix Metal is a great option for enterprises that want the flexibility and performance of the Public Cloud, where business requirements prevent moving data or applications to the public cloud. It offers full compatibility and consistency with on-premises and VMware Cloud operational models and policies and zero downtime migration

VMware Cloud on Equinix Metal is a fully managed solution by VMware (delivered, operated, managed, supported).

VMC-E Announcement: https://blogs.vmware.com/cloud/2022/11/07/introducing-vmware-cloud-on-equinix-metal 

VMC-E Technical Preview: https://www.youtube.com/watch?v=-WpGfrxW39Y&feature=youtu.be&ab_channel=VMwareCloud  

API Security with Spring Cloud Gateway and Tanzu Service Mesh

API Security with Spring Cloud Gateway and Tanzu Service Mesh

Today, more than ever, both humans and machines consume or process data. We, humans, consume data through multiple applications that are hosted in different clouds from different devices like smartphones, laptops, and tablets. Companies are building applications that need to look good and work well on any platform/device.

At the same time, developers are building new applications following cloud-native principles. A cloud-native architecture is a design pattern for applications that are built for the cloud. Most cloud-native apps are organized as microservices which are used to break up larger applications into loosely coupled units that can be managed by smaller teams. Resilience and scale are achieved through horizontal scaling, distributed processing, and automated placement of failed components.

Different people have a different understanding of “cloud-native” and the chances are high that you will get different answers. Let us look at the official definition from CNCF:

“Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.”

12-Factor App

A widely accepted methodology for building cloud-based applications is the “Twelve-Factor Application”. It uses declarative formats for automation to minimize time and costs. It should offer maximum portability between execution environments and be suitable for the deployment on modern cloud platforms. The 12-factor methodology can be applied with any programming language and may use any combination of backing servers (caching, queuing, databases).

Interestingly, we now see other factors like API-first, telemetry, and security complementing this list.

While doing research for my book about “workload mobility and application portability”, I saw the term “API-first” many times.

Then I started to remember that VMware acquired Mesh7 a while ago and they announced Tanzu Service Mesh Enterprise last year at VMworld Europe (now known as VMware Explore). API security was even one of their main topics during the networking & security solutions keynote presented by Tom Gillis.

VMworld 2021 API Security

That is why I thought it is time to better understand this topic and write a piece about APIs. Let us start with some basics first.

What is an API?

An application programming interface (API) is a way for two or more software components to communicate with each other using a set of defined protocols and definitions. APIs are here to make the developer’s life easier.

I bet you have seen parts of Google Maps already embedded in different websites when you were looking for a specific business or restaurant location. Most websites and developers would use Google Maps in this case, because it just makes sense for us, right? That is why Google exposes the Google Maps API so developers can embed Google Maps objects very easily in a standardized way. Or have you seen anyone who wants to develop their own version of Google Maps?

In the case of enterprises, APIs are a very elegant way to share data with customers or other external users. Such public APIs like Google Maps APIs can be used by partners who then can access your data. And we all know that data is the new oil. Companies can make a lot of money today by sharing their data.

Even when using private APIs (internal use only), you decide who can access your API and data. This is one of the reasons why API security and API management become more important. You want to provide secure access when sensitive data is being exposed.

What is an API Gateway?

For microservices-based apps, it makes sense to implement an API gateway, because it can act as a single entry point for all API calls made to your system. And it doesn’t matter if your system/application is hosted on-premises, in the public cloud, or a combination of both. The API gateway takes care of the request (API call) and returns the requested data.

API Gateway Diagram

Image Source: https://www.tibco.com/reference-center/what-is-an-api-gateway 

API gateways can also handle other tasks like authentication, rate management, and statistics. This is important for example when you want to monetize some of your APIs by offering a service to consumers or other companies.

What is Spring Cloud Gateway for VMware Tanzu?

Spring Cloud Gateway for VMware Tanzu provides a simple way to route internal and external API requests to application services that expose APIs. This solution is based on the open-source Spring Cloud Gateway project and provides a library for building API gateways on top of Spring and Java.

Because it is intended that Spring Cloud Gateway sits between a requester and the resource that is being requested, it is in the position to intercept, analyze and modify requests.

Revitalize Legacy Apps with APIs

Before we had microservices, there were monolithic applications. An all-in-one application architecture, where all services are installed on the same virtual machine and depend on each other.

There are multiple reasons why such a monolith cannot be broken up into smaller pieces and modernized. Sometimes it’s not (technically) possible, not worth it, or it just takes too long. Hence many companies still use such monolithic (legacy) applications. The best example here is the mainframe which often still runs business-critical applications.

I always thought that my customers only have two options when modernizing applications:

  • Start from scratch (throw the old app away)
  • Refactor/Rewrite an application

Rewriting an application needs time and costs money. Imagine that you would refactor 50 of your applications, split these monoliths up in microservices, connect these hundreds or thousands of microservices, and at the same time must take care of security (e.g., vulnerabilities).

So, what are you going to do now?

APIs seem to provide a very cost-effective way to integrate some of the older applications with newer ones. With this approach, one can abstract away the data and services from the underlying (legacy) application infrastructure. APIs can extend the life of a legacy application and could be the start of a phased application modernization approach.

Tanzu Service Mesh Enterprise

At the moment, we only have an API gateway that sits in front of our microservices. Multiple (micro)services in an aggregated fashion create the API you want to expose to your internal or external customers. The question now is, how you do plan to expose this API when your microservices are distributed over one or more private or public clouds?

When we talk about APIs, we talk about data in motion. That is why we must secure this data that is sent from its source to any location. And you want to secure the application and data without increasing the application latency and decreasing the user’s experience.

Now it makes sense to me why VMware acquired Mesh7 in March 2021 and announced Tanzu Service Mesh Enterprise about 6 months later with these additional features:

  • API Security. API security is achieved through API vulnerability detection and mitigation, API baselining, and API drift detection (including API parameters and schema validation)
  • Personally Identifiable Information (PII) segmentation and detection. PII data is segmented using attribute-based access control (ABAC) and is detected via proper PII data detection and tracking, and end-user detection mechanisms.
  • API Security Visibility. API security is monitored using API discovery, security posture dashboards, and rich event auditing.

Final Words

APIs are used to connect different applications. They are also used to aggregate services or functions that can be consumed by other businesses or partners. Modern and containerized applications bring a large number of APIs with them, that can be hosted in any cloud.

With Spring Cloud Gateway and Tanzu Service Mesh Enterprise, VMware can deliver application connectivity services that enable improved developer experience and more secure operations.

It took me almost a year to realize the strengths of these (combined) products and why VMware for example acquired Mesh7. But it makes sense to me now. Even I do not completely understand all the key features of Spring Cloud Gateway and Tanzu Service Mesh.

What Is Unique About Oracle Cloud VMware Solution?

What Is Unique About Oracle Cloud VMware Solution?

Everyone talks about multi-cloud and in most cases they mean the so-called big 3 that consist of Amazon Web Services (AWS), Microsoft Azure and Google Cloud. If we are looking at the 2021 Gartner Magic Quadrant for Cloud Infrastructure & Platform Services, one can also spot Alibaba Cloud, Oracle, IBM and Tencent Cloud.

VMware has a strategic partnership with 6 of these hyperscalers and all of these 6 public clouds offer VMware’s software-defined data center (SDDC) stack on top of their global infrastructure:

While I mostly have to talk about AWS, AVS and GCVE, I am finally getting the chance to attend a OCVS customer workshop led by Oracle. That is why I wanted to prepare myself accordingly and share my learnings with you.

Amazon Web Services, Microsoft Azure and Google Cloud dominate the cloud market, but Oracle has unique capabilities and characteristics that no one else can deliver. Additionally, Oracle’s Cloud Infrastructure (OCI) has shown an impressive pace of innovation in the past two years, which led to a 16% increase on Gartner’s solution scorecard for OCI (November 2021, from 62% to 78%), which put them into the fourth place behind Alibaba Cloud!

What is Oracle Cloud VMware Solution?

Oracle Cloud VMware Solution or OCVS is a result of the strategic partnership announced by VMware and Oracle in September 2019. Like the other VMware Cloud solutions like VMC on AWS, AVS or GCVE, Oracle Cloud VMware Solution will enable customers to run VMware Cloud Foundation on Oracle’s Generation 2 Cloud Infrastructure.

Meaning, running an on-premises VMware-based infrastructure combined with OCVS should make cloud migrations easier and faster, because it is the same foundation with vSphere, vSAN and NSX.

Oracle Cloud VMware Solution Key Differentiator #1 – Different SDDC Bundles

Customers can choose between a multi-host SDDC (minimum of 3 production hosts) and a single-host SDDC, that is made for test and dev environments. Oracle guarantees a monthly uptime percentage of at least 99.9% for the OCVS service.

OCVS offers three different ESXi software versions and supports the following versions of other components:

  • ESXi 7.0, 6.7 or 6.5
  • vCenter 7.0, 6.7 or 6.5
  • vSAN 7.0, 6.7 or 6.5
  • NSX-T 3.0
  • HCX Advanced 4.0, 3.5 (default option)
  • HCX Enterprise (billed upgrade)

Note: vSphere 6.5 and vSphere 6.7 reach the End of General Support from VMware on October 15, 2022.

Key Differentiator #2 – Customer-Managed & Baremetal Hosts

The VMware Cloud offerings from AWS, Azure or Google are all vendor-controlled and customers get limited access to the VMware hosts and infrastructure components. With Oracle Cloud VMware Solution, customers get baremetal servers and the same operational experience as on-premises. This means full control over VMware infrastructure and its components:

  • SSH access to ESXi
  • Edit vSAN cluster settings
  • Browse datastores; upload and delete files
  • Customer controls the upgrade policy (version, time, defer)
  • Oracle has NO ACCESS after the SDDC provisioning!

Note: According to Oracle it takes about 2 hours to deploy a new SDDC that consists of 3 production hosts.

Customers can choose between Intel- and AMD-based hosts:

  • Two-socket BM.DenseIO2.52 with two CPUs each running 26 cores (Intel)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 16 cores (AMD)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 32 cores (AMD)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 64 cores (AMD)

Details about the compute shapes can be found here.

Key Differentiator #3 – Availability Domains

To provide high throughput and low latency, an OCVS SDDC is deployed by default across a minimum of three fault domains within a single availability domain in a region. But, upon request it is also possible to deploy your SDDC across multiple availability domains (AD), which comes with a few limitations:

  • While OCVS can scale from 3 up to 64 hosts in a single SDDC, Oracle recommends a maximum of 16 ESXi hosts in a multi-AD architecture
  • This architecture can have impacts on vSAN storage synchronization, and rebuild and resync times

Most hyperscaler only let you use two availability zones and fault domains in the same region. With Oracle it is possible to distribute the minimum of 3 hosts to 3 different availability domains.  An availability domain consists of one or more data centers within the same region.

Note: Traffic between ADs within a region is free of charge.

Key Differentiator #4 – Networking

Because OCVS is customer-managed and can be operated like your on-premises environment, you also get “full” control over the network. OCVS is installed within a customers’ tencancy, which gives customer the advantage to run their VMware SDDC workloads in the same subnet as OCI native services. This provides lower latency to the OCI native services, especially for customers that are using Exadata for example.

Another important advantage of this architecture is capability to create VLAN-backed port groups on your vSphere Distributed Switch (VDS).

Key Differentiator #5 – External Storage

Since March 2022 the OCI File Storage service (NFS) is certified as secondary storage for an OCVS cluster. This allows customers to scale the storage layer of the SDDC without adding new compute resources at the same time.

And just announced on 22 August 2022, with Oracle’s summer ’22 release, OCVS customers can now connect to a certified OCI Block Storage through iSCSI as a second external storage option.

Block Storage provides high IOPS to OCI, and data is stored redundantly across storage servers with built-in repair mechanisms with a 99.99% uptime SLA.

Key Differentiator #6 – Billing Options

OCVS is currently only sold and supported by Oracle. Like with other cloud providers and VMware Cloud offerings, customers have different pricing options depending upon their commitment levels:

  • On-demand (hourly)
  • 1 month
  • 1 year
  • 3 years

The rule of thumb for any hyperscaler says, that a 1-year commitment get around 30% discount and the 3-year commitments are around 50% discount.

The unique characteristic here is the monthly commitment option, which is caluclated with a discount of 16-17% depending on the compute shape.

Note: OCVS is not part (yet) of the VMware Cloud Universal subscription (VMCU).

Key Differentiator #7 – Global Reach

Currently, OCI is available in 39 different cloud regions (21 countries) and Oracle announced five more by the end of 2022. On day one of each region, OCVS is available with a consistent and predictable pricing that doesn’t vary from region to region.

To compare: AWS has launched 27 different regions with 19 being able to host the VMware Cloud on AWS service. In Switzerland, AWS just opened their new data center without having the VMware Cloud on AWS service available, while OCVS is already available in Zurich.

Use Cases

While OCVS is a great solution for joint VMware and Oracle customers, it is not necessary for customers to using Oracle Cloud Infrastructure native solutions.

Data Center Expansion

As you just learned before, OCVS is a great fit if you want to maintain the same VMware software versions on-premises and in OCI. The classic use case here is the pure data center expansion scenario, which allows you to stretch your on-premises infrastructure to OCI, without the need to use their native services.

VMware Horizon on OCVS

As I mentioned at the beginning, Oracle Cloud VMware Solution is based on VMware Cloud Foundation and so it is no surprise that Horizon on OCVS is fully supported.

The Horizon deployment on OCVS works a little bit different compared to the on-premises installation and there is no feature parity yet:

  • Horizon on OCVS does not support vGPUs yet.
  • Horizon on OCVS does not support IPv6 yet.
  • Horizon on OCVS does not support vTPM yet. In this situation it is recommended to use shielded OCVS instances.

Note: The support of NSX Advanced Load Balancer (Avi) is still a roadmap item

VMware Tanzu for OCVS

Since April 2022 it is possible for joint VMware and Oracle customers to use Tanzu Standard and its components with Oracle Cloud VMware Solution. Tanzu Standard comes with VMware’s Kubernetes distribution Tanzu Kubernetes Grid (TKG) and Tanzu Mission Control, which is the right solution for multi-cloud, multi-cluster K8s management.

With TMC you can deploy and manage TKG clusters on vSphere on-premises or on Oracle Cloud VMware Solution. You can even attach existing Kubernetes clusters from other vendors like RedHat OpenShift, Amazon EKS or Azure Kubernetes Service (AKS).

OCVS Tanzu Standard 

Oracle Cloud VMware Solution FAQ

VMware’s OCVS FAQ can be found here.

Oracle’s OCVS FAQ can be found here.

Additional Resources

Here is a list of additional resources:

The Backbone To Upgrade Your Multi-Cloud DevOps Experience

The Backbone To Upgrade Your Multi-Cloud DevOps Experience

Multi-Cloud is a mess. You cannot solve that multi-cloud complexity with a single vendor or one single supercloud (or intercloud), it’s just not possible. But different vendors can help you on your multi-cloud journey to make your and the platform team’s life easier. The whole world talks about DevOps or DevSecOps and then there’s the shift-left approach which puts more responsibility on developers. It seems to me that too many times we forget the “ops” part of DevOps. That is why I would like to highlight the need for Tanzu Mission Control (which is part of  Tanzu for Kubernetes Operations) and Tanzu Application Platform.

Challenges for Operations

What has started with a VMware-based cloud in your data centers, has evolved to a very heterogeneous architecture with two or more public clouds like Amazon Web Services (AWS), Microsoft Azure or Google Cloud Platform. IT analysts tell us that 75% of businesses are already using two or more public clouds. Businesses choose their public cloud providers based on workload or application characteristics and a public clouds known strengths. Companies want to modernize their current legacy applications in the public clouds, because in most cases a simple rehost or migration (lift & shift) doesn’t bring value or innovation they are aiming for.

A modern application is a collection of microservices, which are light, fault tolerant and small. Microservices can run in containers deployed in a private or public cloud. Many operations and platform teams see cloud-native as going to Kubernetes. But cloud-native is so much more than the provisioning and orchestration of containers with Kubernetes. It’s about collaboration, DevOps, internal processes and supply chains, observability/self-healing, continuous delivery/deployment and cloud infrastructures.

Expectation of Kubernetes

Kubernetes 1.0 was contributed as an open source seed technology by Google to the Linux Foundation in 2015, which formed the sub-foundation “Cloud Native Computing Foundation” (CNCF). Founding CNCF members include companies like Google, Red Hat, Intel, Cisco, IBM and VMware.

Currently, the CNCF has over 167k project contributors, around 800 members and more than 130 certified Kubernetes distributions and platforms. Open source projects and the adoption of cloud native technologies are constantly growing.

If we access the CNCF Cloud Native Interactive Landscape, one will get an understanding how many open source projects are supported by the CNCF and maintained this open source community. Since donated to CNCF, almost every company on this planet is using Kubernetes, or a distribution of it:

These were just a few of total 63 certified Kubernetes distributions. What about the certified hosted Kubernetes service offerings? Let me list here some of the popular ones:

  • Alibaba Cloud Container Service for Kubernetes
  • Amazon Elastic Container Service for Kubernetes (EKS)
  • Azure Kubernetes Service (AKS)
  • Google Kubernetes Engine (GKE)
  • Nutanix Karbon
  • Oracle Container Engine
  • OVH Managed Kubernetes Service
  • Red Hat OpenShift Dedicated

All these clouds and vendors expose Kubernetes implementations, but writing software that performs equally well across all clouds seems to be still a myth. At least we have a common denominator, a consistency across all clouds, right? That’s Kubernetes.

Consistent Operations and Experience

It is very interesting to see that the big three hyperscalers Amazon, AWS and Google are moving towards multi-cloud enabled services and products to provide a consistent experience from an operations standpoint, especially for Kubernetes clusters.

Microsoft got Azure Arc now, Google provides Anthos (GKE clusters) for any cloud and AWS also realized that the future consists of multiple clouds and plans to provide AKS “anywhere”.

They all have realized that customers need a centralized management and control plane. Customers are looking for simplified operations and consistent experience when managing multi-cloud K8s clusters.

Tanzu Mission Control (TMC)

Imagine that you have a centralized dashboard with management capabilities, which provide a unified policy engine and allows you to lifecycle all the different K8s clusters you have.

TMC offers built-in security policies and cluster inspection capabilities (CIS benchmarks) so you can apply additional controls on your Kubernetes deployments. Leveraging the open source project Velero, Tanzu Mission Control gives ops teams the capability to very easily backup and restore your clusters and namespaces. Just 4 weeks ago, VMware announced cross-cluster backup and restore capabilities for Tanzu Mission Control, that let Kubernetes-based applications “become” infrastructure and distribution agnostic.

Tanzu Mission Control lets you attach any CNCF-conformant K8s cluster. When attached to TMC, you can manage policies for all Kubernetes distributions such as Tanzu Kubernetes Grid (TKG), Azure Kubernetes Service, Google Kubernetes Engine or OpenShift.

Tanzu Mission Control Dashboard

In VMware’s ongoing commitment to support customers in their multi-cloud application modernization efforts, the Tanzu Mission Control team introduced the preview of lifecycle management of Amazon AKS clusters at VMware Explore US 2022:

Preview for lifecycle management of Amazon Elastic Kubernetes Service (EKS) clusters can enable direct provisioning and management of Amazon EKS clusters so that developers and operators have less friction and more choices for cluster types. Teams will be able to simplify multi-cloud, multi-cluster Kubernetes management with centralized lifecycle management of Tanzu Kubernetes Grid and Amazon EKS cluster types.

Note: With this announcement I would expect that the support for Azure Kubernetes Service (AKS) is also coming soon.

Read the Tanzu Mission Control solution brief to get more information about its benefits and capabilities.

Challenges for Developers

Tanzu Mission Control provides cross-cloud services for your Kubernetes clusters deployed in multiple clouds. But there is still another problem.

Developers are being asked to write code and provide business logic that could run on-prem, on AWS, on Azure or any other public cloud. Every cloud provider has an interest to provide you their technologies and services. This includes the hosted Kubernetes offerings (with different Kubernetes distributions), load balancers, storage, databases, APIs, observability, security tools and so many other components. To me, it sounds very painful and difficult to learn and understand the details of every cloud provider.

Cross-cloud services alone don’t solve that problem. Obviously, neither Kubernetes solves that problem.

What if Kubernetes and centralized management and visibility are not “the” solution but rather something that sits on top of Kubernetes?

And Then Came PaaS

Kubernetes is a platform for building platforms and is not really meant to be used by developers.

The CNCF landscape is huge and complex to understand and integrate, so it is just a logical move that companies were looking more for pre-assembled solutions like platform as a service (PaaS). I think that Tanzu Application Service (formerly known as Pivotal Cloud Foundry), Heroku, RedHat OpenShift and AWS Elastic Beanstalk are the most famous examples for PaaS.

The challenge with building applications that run on a PaaS, is sometimes the need to leverage all the PaaS specific components to fully make use of it. What if someone wants to run her own database? What if the PaaS offering restricts programming languages, frameworks, or libraries? Or is it the vendor lock-in which bothers you?

PaaS solutions alone don’t seem to be solving the missing developer experience either for everyone.

Do you want to build the platform by yourself or get something off the shelf? There is a big difference between using a platform and running one. 🙂

Twitter Kelsey Hightower K8s PaaS

Bring Your Own Kubernetes To A Portable PaaS

What’s next after IaaS has evolved to CaaS (because of Kubernetes) and PaaS? It is adPaaS (Application Developer PaaS).

Have you ever heard of the “Golden Path“? Spotify uses this term and Netflix calls it “Paved Road“.

The idea behind the golden path or paved road is that the (internal) platform offers some form of pre-assembled components and supported approach (best practices) that make software development faster and more scalable. Developers don’t have to reinvent the wheel by browsing through a very fragmented ecosystem of developer tooling where the best way to find out how to do things was to ask the community or your colleagues.

VMware announced Tanzu Application Platform (TAP) in September 2021 with the statement, that TAP will provide a better developer experience on any Kubernetes.

VMware Tanzu Application Platform delivers a prepaved path to production and a streamlined, end-to-end developer experience on any Kubernetes.

It is the platform team’s duty to install and configure the opinionated Tanzu Application Platform as an overlay on top of any Kubernetes cluster. They also integrate existing components of Kubernetes such as storage and networking. An opinionated platform provides the structure and abstraction you are looking for: The platform “does” it for you. In other words, TAP is a prescribed architecture and path with the necessary modularity and flexibility to boost developer productivity.

Diagram depicting the layered structure of TAP

The developers can focus on writing code and do not have to fully understand the details like container image registries, image building and scanning, ingress, RBAC, deploying and running the application etc.

Illustration of TAP conceptual value, starting with components that serve the developer and finishing with the components that serve the operations staff and security staff.

 

TAP comes with many popular best-of-breed open source projects that are improving the DevSecOps experience:

  • Backstage. Backstage is an open platform for building developer portals, created at Spotify, donated to the CNCF, and maintained by a worldwide community of contributors.
  • Carvel. Carvel provides a set of reliable, single-purpose, composable tools that aid in your application building, configuration, and deployment to Kubernetes.
  • Cartographer. Cartographer is a VMware-backed project and is a Supply Chain Choreographer for Kubernetes. It allows App Operators to create secure and pre-approved paths to production by integrating Kubernetes resources with the elements of their existing toolchains (e.g. Jenkins).
  • Tekton. Tekton is a cloud-native, open source framework for creating CI/CD systems. It allows developers to build, test, and deploy across cloud providers and on-premise systems.
  • Grype. Grype is a vulnerability scanner for container images and file systems.
  • Cloud Native Runtimes for VMware Tanzu. Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on Knative and runs on a single Kubernetes cluster.

At VMware Explore US 2022, VMware announced new capabilities that will be released in Tanzu Application Platform 1.3. The most important added functionalities for me are:

  • Support for RedHat OpenShift. Tanzu Application Platform 1.3 will be available on RedHat OpenShift, running in vSphere and on baremetal.
  • Support for air-gapped installations. Support for regulated and disconnected environments, helping to ensure that the components, upgrades, and patches are made available to the system and that they operate consistently and correctly in the controlled environment and keep data secure.
  • Carbon Black Integration. Tanzu Application Platform expands the ecosystem of supported vulnerability scanners with a beta integration with VMware Carbon Black scanner to enable customer choice and leverage their existing investments in securing their supply chain.

The Power Combo for Multi-Cloud

A mix of different workloads like virtual machines and containers that are hosted in multiple clouds introduce complexity. With the powerful combination of Tanzu Mission Control and Tanzu Application Platform companies can unlock the full potential of their platform teams and developers by reducing complexity while creating and using abstraction layers on top your multi-cloud infrastructure.

VMware Explore US 2022 – VMware Projects and Day 2 Announcements

VMware Explore US 2022 – VMware Projects and Day 2 Announcements

Last year at VMworld 2021, VMware mentioned and announced a lot of (new) projects they are working on. What happened to them and which new VMware projects have been mentioned this year at VMware Explore so far?

Project Ensemble – VMware Aria Hub

VMware unveiled their unified multi-cloud management portfolio called VMware Aria, which provides a set of end-to-end solutions for managing the cost, performance, configuration, and delivery of infrastructure and cloud native applications.

VMware Aria is anchored by VMware Aria Hub (formerly known as Project Ensemble), which provides centralized views and controls to manage the entire multi-cloud environment, and leverages VMware Aria Graph to provide a common definition of applications, resources, roles, and accounts.

VMware Aria Graph provides a single source of truth that is updated in near-real time. Other solutions on the market were designed in a slower moving era, primarily for change management processes and asset tracking. By contrast, VMware Aria Graph is designed expressly for cloud-native operations.

VMware Explore US 2022 Session: A Unified Cloud Management Control Plane – Update on Project Ensemble [CMB2210US]

Project Monterey – DPU-based Acceleration for NSX

Last year introduced as Project Monterey and in technology preview, VMware announced the GA version of Monterey called DPU-based Acceleration for NSX yesterday.

Project Arctic – vSphere+ and vSAN+

Project Arctic has been introduced last year as a Technology Preview and was described as “the next step in the evolution of vSphere in a multi-cloud world”. What has started with the idea of bringing VMware Cloud services closer to vSphere, has evolved to a even more interesting and enterprise-ready version called vSphere+ and vSAN+. It includes developer services that consist of the Tanzu Kubernetes Grid runtime, Tanzu Mission Control Essentials and NSX Advanced Load Balancer Essentials. VMware is going to add more and more VMware Cloud add-on services in the future. Additionally, VMware even introduced VMware Cloud Foundation+.

Project Iris – Application Transformer for VMware Tanzu

VMware mentioned Project Iris very briefly last year at VMworld. In February 2022, Project Iris became generally available and is since then known as Application Transformer for VMware Tanzu.

Project Northstar

At VMware Explore on day 1, VMware introduced Project Northstar, which will provide customers a centralized cloud console that gives them instant access to networking and security services, such as network and security policy controls, Network Detection and Response (NDR), NSX Intelligence, Advanced Load Balancing (ALB), Web Application Firewall (WAF), and HCX. Project Northstar will be able to apply consistent networking and security policies across private cloud, hybrid cloud, and multi-cloud environments.

Graphical user interface Description automatically generated

VMware Explore US 2022 Session: Multi-Cloud Networking and Security with NSX [NETB2154US]

Project Watch

At VMware Explore on day 1,VMware unveiled Project Watch, a new approach to multi-cloud networking and security that will provide advanced app-to-app policy controls to help with continuous risk and compliance assessment. In technology preview, Project Watch will help network security and compliance teams to continuously observe, assess, and dynamically mitigate risk and compliance problems in composite multi-cloud applications.

Project Trinidad

Also announced at VMware Explore day 1 and further explained at day 2, Project Trinidad extends VMware’s API security and analytics by deploying sensors on Kubernetes clusters and uses machine learning with business logic inference to detect anomalous behavior in east-west traffic between microservices.

Project Narrows

Project Narrows introduces a unique addition to Harbor, allowing end users to assess the security posture of Kubernetes clusters at runtime. Images previously undetected, will be scanned at the time of introduction to a cluster, so vulnerabilities can now be caught, images may be flagged, and workloads quarantined.

Project Narrows adding dynamic scanning to your software supply chain with Harbor is critical. It allows greater awareness and control of your running workloads than the traditional method of simply updating and storing workloads.

VMware is open sourcing the initial capabilities of Project Narrows on GitHub as the Cloud Native Security Inspector (CNSI) Project.

VMware Explore US 2022 Session: Running App Workloads in a Trusted, Secure Kubernetes Platform [VIB1443USD]

Project Keswick

Also introduced on day 2, Project Keswick is about simplifying edge deployments at scale. It comes as an xLabs project coming out of the Advanced Technology Group in VMware’s Office of the CTO.

Bild

A Keswick deployment is entirely automated and uses Git as a single source of truth for a declarative way to manage your infrastructure and applications through desired state configuration enabled by GitOps. This ensures the infrastructure and applications running at the edge are always exactly what they need to be.

VMware Explore US 2022 Session: Edge Computing: What’s Next? [VIB1457USD]

Project Newcastle

At VMworld 2021, VMware talked the first time (I think) about cryptographic agility and even showed a short demo of a Post Quantum Cryptography (PQC) enabled Unified Access Gateway (using a proxy-based approach): 

Diagram of an HAProxy with TLS Termination and Quantum-Safe Cipher Support as a reverse proxy to communicate with a quantum-safe web browser.

At VMware Explore 2022 day 2, VMware demonstrated what they believe to be the world’s first quantum-safe multi-cloud application!

VMware developed and presented Project Newcastle, a policy-based framework enabling and orchestrating cryptographic transition in modern applications.

Integrated with Tanzu Service Mesh, Project Newcastle gives users greater insight into the cryptography in their applications. But that’s not all — as a platform for cryptographic agility, Project Newcastle automates the process of reconfiguring an application’s cryptography to comply with user-defined policies and industry standards.

Closing Comment

Which VMware projects excite you the most? I’m definitely going with Project Ensemble (Aria Hub) and Project Newcastle!