VMware Explore 2023 US – Day 1 Announcements

VMware Explore 2023 US – Day 1 Announcements

VMware Explore 2023 US is currently happening in Las Vegas and I am onsite! Below you will find an overview of the information that was shared with us during the general session and solution keynotes.

Please be aware that this list is not complete but it should include all the major announcements including references and sources.

VMware Aria and VMware Tanzu

Starting this year, VMware Aria and VMware Tanzu form a single track at VMware Explore and VMware introduced the develop, operate, and optimize pillars (DOO) for Aria and Tanzu around April 2023.

VMware Tanzu DOO Framework

The following name changes and adjustments have been announced at VMware Explore US 2023:

  • The VMware Tanzu portfolio includes two new product categories (product family) called “Tanzu Application Platform” and “Tanzu Intelligence Services”.
  • Tanzu Application Platform includes the products Tanzu Application Platform (TAP) and Tanzu for Kubernetes Operations (TKO), and the new Tanzu Application Engine module.
  • Tanzu Intelligence Services – Aria Cost powered by CloudHealth, Aria Guardrails, Aria Insights, and Aria Migration will be rebranded as “Tanzu” and become part of this new Tanzu Intelligence Services category.
    • Tanzu Hub & Tanzu Graph
    • Tanzu CloudHealth
    • Tanzu Guardrails
    • Tanzu Insights (currently known as Aria Insights)
    • Tanzu Transformer (currently known as Aria Migration)
  • Aria Hub and Aria Graph are now called Tanzu Hub
  • VMware Cloud Packs are now called the VMware Cloud Editions (more information below)

Note: VMware expects to implement these changes latest by Q1 2024

The VMware Aria and Tanzu announcement and rebranding information can be found here.

Tanzu Mission Control

After the announcement that Tanzu Mission Control supports the lifecycle management of Amazon EKS clusters, VMware announced the expansion to provide lifecycle management capabilities of Microsoft AKS clusters now as well. 

Tanzu Application Engine (Private Beta)

VMware announced a new solution for the Tanzu Application Platform category.

VMware Tanzu for Kubernetes Operations is introducing Tanzu Application Engine, enhancing multi-cloud support with lifecycle management of Azure AKS clusters, and offering new Kubernetes FinOps (cluster cost) visibility. A new abstraction that includes workload placement, K8s runtime, data services, libraries, infra resources, with a set of policies and guardrails.

The Tanzu Application Engine announcement can be found here.

VMware RabbitMQ Managed Control Plane

I know a lot of customers who built an in-house RabbitMQ cloud service.

VMware just announced a beta program for a new VMware RabbitMQ Managed Control Plane which allows enterprises to seamlessly integrate RabbitMQ within their existing cloud environment, offering flexibility and control over data streaming processes.

What’s New with VMware Aria?

Other Aria announcements can be found here.

What’s New with VMware Aria Operations at VMware Explore

Next-Gen Public Cloud Management with VMware Aria Automation

VMware Cloud Editions

What has started with four different VMware Cloud Packs, is now known as “VMware Cloud Editions” with five different options:

VMware Cloud Editions

Here’s an overview of the different solutions/subscriptions included in each edition:

VMware Cloud Editions Connected Subscriptions

More VMware Cloud related announcements can be found here.

What’s New in vSphere 8 Update 2

As always, VMware is working on enhancing operational efficiency to make the life of an IT admin easier. And this gets better with the vSphere 8 U2 release.

In vSphere 8 Update 2, we are making significant improvements to several areas of maintenance to reduce and in some cases eliminate this need for downtime so vSphere administrators can make those important maintenance changes without having a large impact on the wider vSphere infrastructure consumers.

These enhancements include, reduced downtime upgrades for vCenter, automatic vCenter LVM snapshots before patching and updating, non-disruptive certificate management, and reliable network configuration recovery after a vCenter is restored from backup.

More information about the vSphere 8 Update 2 release can be found here.

What’s New in vSAN 8 Update 2

At VMware Explore 2022, VMware announced the new vSAN 8.0 release which included the new Express Storage Architecture (ESA), which even got better with the recent vSAN 8.0 Update 1 release.

VMware vSAN Max – Petabyte-Scale Disaggregated Storage

VMware vSAN Max, powered by vSAN Express Storage Architecture, is a new vSAN offering in the vSAN family delivering
petabyte-scale disaggregated storage for vSphere. With its new disaggregated storage deployment model, vSAN customers can scale storage elastically and independently from compute and deploy unified block, file, and partner-based object storage to maximize utilization and achieve lower TCO.

VMware vSAN Max

vSAN Max expands the use cases in which HCI can provide exceptional value. Disaggregation through vSAN Max provides flexibility to build infrastructure with the scale and efficiency required for non-linear scaling applications, such as storage-intensive databases, modern elastic applications with large datasets and more. Customers have a choice of deploying vSAN in a traditional model or a disaggregated model with vSAN Max, while still using a single control plane to manage both deployment options.

The vSAN Max announcement can be found here.

VMware Cloud on AWS

VMware announced a VMware Cloud on AWS Advanced subscription tier that will be available on i3en.metal and i4i.metal instance types only. This subscription will include advanced cloud management, networking and security features:

  • VMware NSX+ Services (NSX+ Intelligence, NDR capabilities, NSX Advanced Load Balancer)
  • vSAN Express Storage Architecture Support
  • VMware Aria Automation
  • VMware Aria Operations
  • VMware Aria Operations for Logs

Note: Existing deployments (existing SDDCs) will be entitled to these advanced cloud management, networking and security features over time

The VMware Cloud on AWS Advanced Subscription Tier FAQ can be found here

Introduction of VMware NSX+

Last year, VMware introduced Project Northstar as technology preview:

Project Northstar is a SaaS-based networking and security offering that will empower NSX customers with a set of on-demand multi-cloud networking and security services, end-to-end visibility, and controls. Customers will be able to use a centralized cloud console to gain instant access to networking and security services, such as network and security policy controls, Network Detection and Response (NDR), NSX Intelligence, Advanced Load Balancing (ALB), Web Application Firewall (WAF), and HCX. It will support both private cloud and VMware Cloud deployments running on public clouds and enable enterprises to build flexible network infrastructure that they can spin up and down in minutes.

This year, VMware announced the initial availability of the NSX+ service. VMware NSX+ is a fully managed cloud-based service offering that allows networking, security, and operations teams to consume and operate VMware NSX services from a single cloud console across private and public clouds.

NSX+ Architectural Diagram

The following services are available:

  • NSX+ Policy Management: Provides unified networking and security policy management across multiple clouds and on-premises data centers.
  • NSX+ Intelligence (Tech Preview only): Provides a big data reservoir and a system for network and security analytics for real-time traffic visibility into applications traffic all the way from basic traffic metrics to deep inspection of packets.
  • NSX+ NDR (Tech Preview only): Provides a scalable threat detection and response service offering for Security Operations Center (SoC) teams to triage real time security threats to their data center and cloud.

There are three different NSX+ and two NSX+ distributed firewall editions available:

  • NSX+ Standard. For organizations needing a basic set of NSX connectivity and security features for single location software-defined data center deployments.
  • NSX+ Advanced. For organizations needing advanced networking and security features that are applied to multiple sites. This edition also entitles customers to VMware NSX+ Advanced Load Balancer Cloud Services.
  • NSX+ Enterprise. For organizations needing all of the capability NSX has to offer. This edition also entitles customers to VMware NSX+ Advanced Load Balancer Cloud Services.
  • NSX+ Distributed Firewall. For organizations needing implement access controls for east-west traffic within the network (micro-segmentation) but not focused on Threat detection and prevention services.
  • NSX+ Distributed Firewall with Threat Prevention. For organizations needing access control and select Threat prevention features for east-west traffic within the network. 

An NSX+ feature overview can be found here.

Note: Currently, NSX+ only supports NSX on-premises deployments (NSX 4.1.1 or later) and VMware Cloud on AWS

VMware Cloud Foundation

VMware announced a few innovations for H2 2023, which includes the support for Distributed Service Engine (DSE aka Project Monterey), vSAN ESA support, and NSX+.

 

Generative AI – VMware Private AI Foundation with Nvidia

VMware and Nvidia’s CEOs announced VMware Private AI Foundation as the result of their longstanding partnership. 

Built on VMware Cloud Foundation, this integrated solution with Nvidia will enable enterprises to customize models and run generative AI applications, including intelligent chatbots, assistants, search, and summarization.

Bild

Anywhere Workspace Announcements

At VMware Explore 2022, VMware shared its vision for autonomous workspaces.

Autonomous workspace is a concept (not an individual product) that is our north star for the future of end-user computing. It means going beyond creating a unified workspace with basic automations, to analyzing huge amounts of data with AI and machine learning, to drive more advanced, context aware automations. This leads to a workspace that can be considered self-configuring, self-healing, and self-securing. 

VMware continued working on the realization of this vision and came up with a lot of announcements, which can be found here.

Other Announcements

Please find below some announcements that VMware shared with us during the SpringOne event or before and after the general session on August 22nd, 2023:

Supercloud – A Hybrid Multi-Cloud

Supercloud – A Hybrid Multi-Cloud

I thought it is time to finally write a piece about superclouds. Call it supercloud, the new multi-cloud, a hybrid multi-cloud, cross-cloud, or a metacloud. New terms with the same meaning. I may be biased but I am convinced that VMware is in the pole position for this new architecture and approach.

Let me also tell you this: superclouds are nothing new. Some of you believe that the idea of a supercloud is something new, something modern. Some of you may also think that cross-cloud services, workload mobility, application portability, and data gravity are new complex topics of the “modern world” that need to be discussed or solved in 2023 and beyond. Guess what, most of these challenges and ideas exist for more than 10 years already!

Cloud-First is not cool anymore

There is clear evidence that a cloud-first approach is not cool or the ideal approach anymore. Do you remember about a dozen years ago when analysts believed that local data centers are going to disappear and the IT landscape would only consist of public clouds aka hyperscalers? Have a look at this timeline:

VMware and Public Clouds Timeline

We can clearly see when public clouds like AWS, Google Cloud, and Microsoft Azure appeared on the surface. A few years later, the world realized that the future is hybrid or multi-cloud. In 2019, AWS launched “Outposts”, Microsoft made Azure Arc and their on-premises Kubernetes offering available only a few years later.

Google, AWS, and Microsoft changed their messaging from “we are the best, we are the only cloud” to “okay, the future is multi-cloud, we also have something for you now”. Consistent infrastructure and consistent operations became almost everyone’s marketing slogan.

As you can also see above, VMware announced their hybrid cloud offering “VMware Cloud on AWS” in 2016, the initial availability came a year after, and since 2018 it is generally available.

From Internet to Interclouds

Before someone coined the term “supercloud”, people were talking about the need for an “intercloud”. In 2010, Vint Cerf, the so-called “Father of the Internet” shared his opinions and predictions on the future of cloud computing. He was talking about the potential need and importance of interconnecting different clouds.

Cerf already understood about 13 years ago, that there’s a need for an intercloud because users should be able to move data/workloads from one cloud to another (e.g., from AWS to Azure to GCP). He was guessing back then that the intercloud problem could be solved around 2015.

We’re at the same point now in 2010 as we were in ’73 with internet.

In short, Vint Cerf understood that the future is multi-cloud and that interoperability standards are key.

There is also a document that also delivers proof that NIST had a working group (IEEE P2302) trying to develop “the Standard for Intercloud Interoperability and Federation (SIIF)”. This was around 2011. How did the suggestion back then look like? I found this youtube video a few years ago with the following sketch:

Intercloud 2012

Workload Mobility and Application Portability

As we can see above, VM or workload mobility was already part of this high-level architecture from the IEEE working group. I also found a paper from NIST called “Cloud Computing Standards Roadmap” dated July 2013 with very interesting sections:

Cloud platforms should make it possible to securely and efficiently move data in, out, and among cloud providers and to make it possible to port applications from one cloud platform to another. Data may be transient or persistent, structured or unstructured and may be stored in a file system, cache, relational or non-relational database. Cloud interoperability means that data can be processed by different services on different cloud systems through common specifications. Cloud portability means that data can be moved from one cloud system to another and that applications can be ported and run on different cloud systems at an acceptable cost.

Note: VMware HCX is available since 2018 and is still the easiest and probably the most cost-efficient way to migrate workloads from one cloud to another.

It is all about the money

Imagine it is March 2014, and you read the following announcement: Cisco is going big – they want to spend $1 billion on the creation of an intercloud

Yes, that really happened. Details can be found in the New York Times Archive. The New York Times even mentioned at the end of their article that “it’s clear that cloud computing has become a very big money game”.

In Cisco’s announcement, money had also been mentioned:

Of course, we believe this is going to be good for business. We expect to expand the addressable cloud market for Cisco and our partners from $22Bn to $88Bn between 2013-2017.

In 2016, Cisco retired their intercloud offering, because AWS and Microsoft were, and still are, very dominant. AWS posted $12.2 billion in sales for 2016, Microsoft ended up almost at $3 billion in revenue with Azure.

Remember Cisco’s estimate about the “addressable cloud market”? In 2018, Gartner presented the number of $145B for the worldwide public cloud spend in 2017. For 2023, Gartner forecasted a cloud spend of almost $600 billion.

Data Gravity and Egress Costs

Another topic I want to highlight is “data gravity” coined by Dave McCrory in 2010:

Consider Data as if it were a Planet or other object with sufficient mass. As Data accumulates (builds mass) there is a greater likelihood that additional Services and Applications will be attracted to this data. This is the same effect Gravity has on objects around a planet. As the mass or density increases, so does the strength of gravitational pull. As things get closer to the mass, they accelerate toward the mass at an increasingly faster velocity. Relating this analogy to Data is what is pictured below.

Put data gravity together with egress costs, then one realizes that data gravity and egress costs limit mobility and/or portability discussions:

Source: https://medium.com/@alexandre_43174/the-surprising-truth-about-cloud-egress-costs-d1be3f70d001

By the way, what happened to “economies of scale”?

The Cloud Paradox

As you should understand by now topics like costs, lock-in, and failed expectations (technically and commercially) are being discussed for more than a decade already. That is why I highlighted NIST’s sentence above: Cloud portability means that data can be moved from one cloud system to another and that applications can be ported and run on different cloud systems at an acceptable cost.

Acceptable cost.

While the (public) cloud seems to be the right choice for some companies, we now see other scenarios popping up more often: reverse cloud migrations (also called repatriation sometimes)

I have customers who tell me, that the exact same VM with the exact same business logic costs between 5 to 7 times more when they moved it from their private to a public cloud.

Let’s park that and cover the “true costs of cloud” another time. 😀

Public Cloud Services Spend

Looking at Vantage’s report, we can see the following top 10 services on AWS, Azure and GCP ranked by the share of costs:

If they are right and the numbers are true for most enterprises, it means that customers spend most of their money on virtual machines (IaaS), databases, and storage.

What does Gartner say?

Let’s have a look at the most recent forecast called “Worldwide Public Cloud End-User Spending to Reach Nearly $600 Billion in 2023” from April 2023:

Gartner April 2023 Public Cloud Spend Forecast

All segments of the cloud market are expected see growth in 2023. Infrastructure-as-a-service (IaaS) is forecast to experience the highest end-user spending growth in 2023 at 30.9%, followed by platform-as-a-service (PaaS) at 24.1%

Conclusion

If most companies spend around 30% of their budget on virtual machines and Gartner predicts that IaaS is still having a higher growth than SaaS or PaaS, a supercloud architecture for IaaS would make a lot of sense. You would have the same technology format, could use the same networking and security policies, and existing skills, and benefit from many other advantages as well.

Looking at the VMware Cloud approach, which allows you to run VMware’s software-defined data center (SDDC) stack on AWS, Azure, Google, and many other public clouds, customers could create a seamless hybrid multi-cloud architecture – using the same technology across clouds.

Other VMware products that fall under the supercloud category would be Tanzu Application Platform (TAP), the Aria Suite, and Tanzu for Kubernetes Operations (TKO) which belong to VMware’s Cross-Cloud Services portfolio.

Final Words

I think it is important that we understand, that we are still in the early days of multi-cloud (or when we use multiple clouds).

Customers get confused because it took them years to deploy or move new or existing apps to the public cloud. Now, analysts and vendors talk about cloud exit strategies, reverse cloud migrations, repatriations, exploding cloud costs, and so on.

Yes, a supercloud is about a hybrid multi-cloud architecture and a standardized design for building apps and platforms across cloud. But the most important capability, in my opinion, is the fact that it makes your IT landscape future-ready on different levels with different abstraction layers.

What does VMware Cloud Disaster Recovery have in common with Dell PowerProtect?

What does VMware Cloud Disaster Recovery have in common with Dell PowerProtect?

It was at VMware Explore Europe 2022 when I ran into a colleague from Dell who told me about “transparent snapshots” and mentioned that their solution has something in common VMware Cloud Disaster Recovery (VCDR). After doing some research, I figured out that he was talking about the Light Weight Delta (LWD) protocol.

Snapshots

Snapshots are states of a system or virtual machine (VM) at a particular point in time and should not be considered a backup. The data of a snapshot include all files that form a virtual machine – this includes disks, memory, and other devices like network interface cards (vNIC). To create or delete a snapshot of a VM, the VM needs to be “stunned” (quiesce I/Os).

I would say it is common knowledge that a higher number of snapshots negatively impact the I/O performance of a virtual machine. Creating snapshots results in the creation of a snapshot hierarchy with parent-to-child relationships. Every snapshot creates a delta .vmdk file and redirects all inputs/writes to this delta disk file.

VMware vSphere Storage APIs for Data Protection

Currently, a lot of backup solutions use “VMware vSphere Storage APIs for Data Protection” (VADP), which has been introduced in vSphere 4.0 released in 2009. A backup product using VADP can backup VMs from a central backup server or virtual machine without requiring any backup agents. Meaning, backup solutions using VADP create snapshots that are used to create backups based on the changed blocks of a disk (Changed Block Tracking aka CBT). These changes or this delta is then written to a secondary site or storage and the snapshot is removed after.

Deleting a snapshot consolidates the changes between snapshots and previous disk states. Then it writes all the data from the delta disk that contains the information about the deleted snapshot to the parent disk. When you delete the base parent snapshot, all changes merge with the base virtual machine disk.

To delete a snapshot, a large amount of information must be read and written to a disk. This process can reduce the virtual machine performance until the consolidation is complete.

VMware Cloud Disaster Recovery (VCDR)

In 2020, VMware announced the general availability of VMware Cloud Disaster Recovery based on technology from their Datrium acquisition. This new solution extended the current VMware disaster recovery (DR) solutions like VMware Site Recovery, Site Recovery Manager, and Cloud Provider DR solutions.

VMware Cloud Disaster Recovery is a VMware-delivered disaster recovery as a service (DRaaS) offering that protects on-premises vSphere and VMware Cloud on AWS workloads to VMware Cloud on AWS from both disasters and ransomware attacks. It efficiently replicates VMs to a Scale-out Cloud File System (SCFS) that can store hundreds of recovery points with recovery point objectives (RPOs) as low as 30 minutes. This enables recovery for a wide variety of disasters including ransomware. Virtual machines are recovered to a software-defined data center (SDDC) running in VMware Cloud on AWS. VMware Cloud Disaster Recovery also offers fail-back capabilities to bring your workloads back to their original location after the disaster is remediated.

VMware Cloud DR Architecture

Note: Currently, VCDR is only available as an add-on feature to VMware Cloud on AWS. The support for Azure VMware Solution is expected to come next.

To me, VCDR is one of the best solutions from the whole VMware portfolio.

High-Frequency Snapshots (HFS)

One of the differentiators and game-changers are these so-called high-frequency snapshots, which are based on the Light Weight Delta (LWD) technology that VMware developed. Using HFS allows customers to schedule recurring snapshots for every 30 minutes, meaning, that customers can get an Recovery Point Objective (RPO) of 30min!

To enable and use high-frequency snapshots, your environment must be running on vSphere 7.0 U3 or higher.

With HFS and LWD, there is no Changed Block Tracking (CBT), no VADP, and no VM stun. This results in better performance when maintaining these deltas.

Transparent Snapshots by Dell EMC PowerProtect Data Manager (PPDM)

At VMworld 2021, Dell Technologies presented a session called “Protect Your Virtual Infrastructure with Drastically Less Disruption [SEC2764S]” which was about “transparent snapshots” – image backups with near-zero impact on virtual machines, without the need to pause the VM during the backup process. No more backup proxies, no more agents.

Dell Transparent Snapshot Architecture

As with HFS and VCDR, your environment needs to run on vSphere 7.0 U3 and higher.

How does it work?

PowerProtect Data Manager transparent snapshots use the vSphere API for I/O (VAI/O) Filtering framework. The transparent snapshots data mover (TSDM) is deployed in the VMware ESXi infrastructure through a PowerProtect Data Manager VIB. This deployment creates consistent VM backup copies and writes the copies to the protection storage (PowerProtect appliance).

After, this VIB (Data Protection Daemon (DPD) which is part of the VMware ESXi >7.0 U3 image has been installed on the ESXi host) tracks the delta changes in memory and then transfers the delta changes directly to the protection storage.

VMware Data Protection Daemon

Note: PPDM also provides image backup and restore support for VMware Cloud on AWS and Azure VMware Solution, but requires VADP.

Light Weight Delta (LWD)

It seems that LWD has been developed by VMware but there is no publicly available information out there yet. I only found this screenshot as part of this Dell article:

VMware Light Weight Delta

It also seems that Dell is/was the first who could leverage the LWD protocol exclusively but I am sure it will be made available to other VMware partners as well.

What Is Unique About Oracle Cloud VMware Solution?

What Is Unique About Oracle Cloud VMware Solution?

Everyone talks about multi-cloud and in most cases they mean the so-called big 3 that consist of Amazon Web Services (AWS), Microsoft Azure and Google Cloud. If we are looking at the 2021 Gartner Magic Quadrant for Cloud Infrastructure & Platform Services, one can also spot Alibaba Cloud, Oracle, IBM and Tencent Cloud.

VMware has a strategic partnership with 6 of these hyperscalers and all of these 6 public clouds offer VMware’s software-defined data center (SDDC) stack on top of their global infrastructure:

While I mostly have to talk about AWS, AVS and GCVE, I am finally getting the chance to attend a OCVS customer workshop led by Oracle. That is why I wanted to prepare myself accordingly and share my learnings with you.

Amazon Web Services, Microsoft Azure and Google Cloud dominate the cloud market, but Oracle has unique capabilities and characteristics that no one else can deliver. Additionally, Oracle’s Cloud Infrastructure (OCI) has shown an impressive pace of innovation in the past two years, which led to a 16% increase on Gartner’s solution scorecard for OCI (November 2021, from 62% to 78%), which put them into the fourth place behind Alibaba Cloud!

What is Oracle Cloud VMware Solution?

Oracle Cloud VMware Solution or OCVS is a result of the strategic partnership announced by VMware and Oracle in September 2019. Like the other VMware Cloud solutions like VMC on AWS, AVS or GCVE, Oracle Cloud VMware Solution will enable customers to run VMware Cloud Foundation on Oracle’s Generation 2 Cloud Infrastructure.

Meaning, running an on-premises VMware-based infrastructure combined with OCVS should make cloud migrations easier and faster, because it is the same foundation with vSphere, vSAN and NSX.

Oracle Cloud VMware Solution Key Differentiator #1 – Different SDDC Bundles

Customers can choose between a multi-host SDDC (minimum of 3 production hosts) and a single-host SDDC, that is made for test and dev environments. Oracle guarantees a monthly uptime percentage of at least 99.9% for the OCVS service.

OCVS offers three different ESXi software versions and supports the following versions of other components:

  • ESXi 7.0, 6.7 or 6.5
  • vCenter 7.0, 6.7 or 6.5
  • vSAN 7.0, 6.7 or 6.5
  • NSX-T 3.0
  • HCX Advanced 4.0, 3.5 (default option)
  • HCX Enterprise (billed upgrade)

Note: vSphere 6.5 and vSphere 6.7 reach the End of General Support from VMware on October 15, 2022.

Key Differentiator #2 – Customer-Managed & Baremetal Hosts

The VMware Cloud offerings from AWS, Azure or Google are all vendor-controlled and customers get limited access to the VMware hosts and infrastructure components. With Oracle Cloud VMware Solution, customers get baremetal servers and the same operational experience as on-premises. This means full control over VMware infrastructure and its components:

  • SSH access to ESXi
  • Edit vSAN cluster settings
  • Browse datastores; upload and delete files
  • Customer controls the upgrade policy (version, time, defer)
  • Oracle has NO ACCESS after the SDDC provisioning!

Note: According to Oracle it takes about 2 hours to deploy a new SDDC that consists of 3 production hosts.

Customers can choose between Intel- and AMD-based hosts:

  • Two-socket BM.DenseIO2.52 with two CPUs each running 26 cores (Intel)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 16 cores (AMD)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 32 cores (AMD)
  • Two-socket BM.DenselO.E4.128 with two CPUs each running 64 cores (AMD)

Details about the compute shapes can be found here.

Key Differentiator #3 – Availability Domains

To provide high throughput and low latency, an OCVS SDDC is deployed by default across a minimum of three fault domains within a single availability domain in a region. But, upon request it is also possible to deploy your SDDC across multiple availability domains (AD), which comes with a few limitations:

  • While OCVS can scale from 3 up to 64 hosts in a single SDDC, Oracle recommends a maximum of 16 ESXi hosts in a multi-AD architecture
  • This architecture can have impacts on vSAN storage synchronization, and rebuild and resync times

Most hyperscaler only let you use two availability zones and fault domains in the same region. With Oracle it is possible to distribute the minimum of 3 hosts to 3 different availability domains.  An availability domain consists of one or more data centers within the same region.

Note: Traffic between ADs within a region is free of charge.

Key Differentiator #4 – Networking

Because OCVS is customer-managed and can be operated like your on-premises environment, you also get “full” control over the network. OCVS is installed within a customers’ tencancy, which gives customer the advantage to run their VMware SDDC workloads in the same subnet as OCI native services. This provides lower latency to the OCI native services, especially for customers that are using Exadata for example.

Another important advantage of this architecture is capability to create VLAN-backed port groups on your vSphere Distributed Switch (VDS).

Key Differentiator #5 – External Storage

Since March 2022 the OCI File Storage service (NFS) is certified as secondary storage for an OCVS cluster. This allows customers to scale the storage layer of the SDDC without adding new compute resources at the same time.

And just announced on 22 August 2022, with Oracle’s summer ’22 release, OCVS customers can now connect to a certified OCI Block Storage through iSCSI as a second external storage option.

Block Storage provides high IOPS to OCI, and data is stored redundantly across storage servers with built-in repair mechanisms with a 99.99% uptime SLA.

Key Differentiator #6 – Billing Options

OCVS is currently only sold and supported by Oracle. Like with other cloud providers and VMware Cloud offerings, customers have different pricing options depending upon their commitment levels:

  • On-demand (hourly)
  • 1 month
  • 1 year
  • 3 years

The rule of thumb for any hyperscaler says, that a 1-year commitment get around 30% discount and the 3-year commitments are around 50% discount.

The unique characteristic here is the monthly commitment option, which is caluclated with a discount of 16-17% depending on the compute shape.

Note: OCVS is not part (yet) of the VMware Cloud Universal subscription (VMCU).

Key Differentiator #7 – Global Reach

Currently, OCI is available in 39 different cloud regions (21 countries) and Oracle announced five more by the end of 2022. On day one of each region, OCVS is available with a consistent and predictable pricing that doesn’t vary from region to region.

To compare: AWS has launched 27 different regions with 19 being able to host the VMware Cloud on AWS service. In Switzerland, AWS just opened their new data center without having the VMware Cloud on AWS service available, while OCVS is already available in Zurich.

Use Cases

While OCVS is a great solution for joint VMware and Oracle customers, it is not necessary for customers to using Oracle Cloud Infrastructure native solutions.

Data Center Expansion

As you just learned before, OCVS is a great fit if you want to maintain the same VMware software versions on-premises and in OCI. The classic use case here is the pure data center expansion scenario, which allows you to stretch your on-premises infrastructure to OCI, without the need to use their native services.

VMware Horizon on OCVS

As I mentioned at the beginning, Oracle Cloud VMware Solution is based on VMware Cloud Foundation and so it is no surprise that Horizon on OCVS is fully supported.

The Horizon deployment on OCVS works a little bit different compared to the on-premises installation and there is no feature parity yet:

  • Horizon on OCVS does not support vGPUs yet.
  • Horizon on OCVS does not support IPv6 yet.
  • Horizon on OCVS does not support vTPM yet. In this situation it is recommended to use shielded OCVS instances.

Note: The support of NSX Advanced Load Balancer (Avi) is still a roadmap item

VMware Tanzu for OCVS

Since April 2022 it is possible for joint VMware and Oracle customers to use Tanzu Standard and its components with Oracle Cloud VMware Solution. Tanzu Standard comes with VMware’s Kubernetes distribution Tanzu Kubernetes Grid (TKG) and Tanzu Mission Control, which is the right solution for multi-cloud, multi-cluster K8s management.

With TMC you can deploy and manage TKG clusters on vSphere on-premises or on Oracle Cloud VMware Solution. You can even attach existing Kubernetes clusters from other vendors like RedHat OpenShift, Amazon EKS or Azure Kubernetes Service (AKS).

OCVS Tanzu Standard 

Oracle Cloud VMware Solution FAQ

VMware’s OCVS FAQ can be found here.

Oracle’s OCVS FAQ can be found here.

Additional Resources

Here is a list of additional resources:

VMware Cloud on AWS – The Power of VMware and AWS

VMware Cloud on AWS – The Power of VMware and AWS

VMware Cloud on AWS (VMC on AWS) brings VMware’s software-defined data center (SDDC) stack to the AWS cloud. By using the same vSphere-based virtualization/cloud technology on-premises and in the public cloud, you can create a true hybrid cloud architecture, that enables you to get consistent operations by using consistent infrastructure.

VMC on AWS Overview

This solution comes with optimized access to the AWS services and is delivered, sold and supported by VMware, AWS and their partner networks.

As you can see above, VMC on AWS comes with the same VMware tools and integrates the VMware Cloud Foundation stack (vSphere for compute, vSAN for storage, NSX for networking) along with vCenter for management.

VMware Cloud on AWS runs on dedicated Amazon EC2 bare-metal infrastructure.

Instance Types

VMware Cloud on AWS comes with two different host configurations, which both require a minimum of two hosts per cluster.

VMC on AWS Instances

For identifying the right host types for specific use cases, check out the VMware Cloud on AWS sizer.

Note: 99.9% SLA for non-stretched clusters, 99.99% for stretched clusters

Single Host Starter Configuration

VMC on AWS allows you to deploy a starter configuration with a single host only (not available with i3en.metal hosts).

This small SDDC configuration allows customers to get their first experiences with this hybrid cloud offering during a 60-day time period. Such a setup is only appropriate for test and development or proof of concept use cases. You can run production workloads on this small VMC on AWS environment if you scale up to the minimum of two hosts before the 60-day period ends, otherwise your evaluation ends with you losing data.

Note: Not all features of the standard VMC service offering are available in this limited setting. The VMC on AWS service level offering also does not apply to this one-node offering.

Included VMware Software

The following software is included in single host and production configurations:

Single Hosts (non-production environments) Production (minimum 2 hosts)

Includes

  • VMware SDDC software: vSphere, vSAN, NSX-T, vCenter Server
  • VMware HCX
  • Dedicated Amazon EC2 Bare Metal Instances
  • VMware Global Support

Purchase separately

  • VMware Site Recovery
  • VMware Cloud Disaster Recovery
  • VMware vRealize Automation Cloud
  • VMware vRealize Operations Cloud
  • VMware vRealize Log Insight Cloud
  • VMware vRealize Network Insight Cloud
  • VMware Tanzu Standard

Not supported

  • Lifecycle management by VMware (updates, patches and upgrades)
  • High Availability (HA) and Stretched Clusters
  • Service Level Agreement (SLA)

Includes

  • VMware SDDC software: vSphere, vSAN, NSX-T, vCenter Server
  • VMware HCX
  • VMware Tanzu Services: TKG Service + TMC Essentials
  • Dedicated Amazon EC2 Bare Metal Instances
  • VMware Global Support
  • Lifecycle management by VMware (updates, patches and upgrades)
  • Support for High Availability (HA) and Stretched Clusters
  • Service Level Agreement (SLA)

Purchase separately

  • VMware Site Recovery
  • VMware Cloud Disaster Recovery
  • VMware NSX Advanced Firewall
  • VMware vRealize Automation Cloud
  • VMware vRealize Operations Cloud
  • VMware vRealize Log Insight Cloud
  • VMware vRealize Network Insight Cloud
  • VMware Tanzu Standard

VMware Cloud on AWS Outposts

If you want to get the agility and innovation of (VMware) Cloud in your own data center, delivered as a service, then VMC on AWS Outposts is for you.

VMC on AWS Outposts is a fully managed on-premises as-a-service offering, that stretches VMC on AWS to your data center or edge location. You’ll get dedicated Amazon Nitro-based EC2 bare-metal instances delivered on-premises with VMware Cloud Foundation running on top.

VMC on AWS Outposts

What’s included in the offering?

  • AWS Outposts 42u rack (we can also expect a half-rack offering in the future)
    • 3-8 hosts configurations based on i3en.metal
    • Dark host capacity included (for remediation, EDRS, scale-out and lifecycle management purposes)
    • Installed by AWS
  • AWS managed dedicated Nitro-based i3en.metal EC2 instance with local SSD storage
  • VMware managed SDDC software – vSphere, vSAN, NSX-T, vCenter Server
  • VMware HCX
  • VMware Cloud Console
  • Support by VMware SREs
  • Supply chain, shipment logistics and onsite installation by AWS
  • Ongoing hardware monitoring with break/fix support.

Use Cases

VMware Cloud on AWS Outposts is made for multiple use cases:

  • Data/App Locality
  • Low latency
  • Local data processing
  • Data sovereignty/compliance
  • Infrastructure modernization
  • Branche Office or large edge modernization

But this offering and VMC on AWS in general come with multiple other use cases which help orgnaizations to fulfill their cloud strategy.

App Modernization

VMware Cloud on AWS provides an infrastructure platform option for customers to modernize their existing enterprise applications on and enables them to run their enterprise workloads of today and tomorrow. With VMware Cloud on AWS, customers can run, monitor, and manage their Kubernetes clusters and virtual machines – all on the same infrastructure. VMware Tanzu Kubernetes Grid provides a consistent, upstream-compatible distribution of Kubernetes, that is tested, signed, and supported by VMware. Tanzu Kubernetes Grid is central to many of the offerings in the VMware Tanzu portfolio.

Solution Brief

Cloud Migration / Data Center Extension

VMC on AWS can help customers to expand to new locations. Maybe it’s an unplanned project or there are temporary or seasonal capacity needs. Some customers are also using such an offering to build a flexible test, lab or training environment in the public cloud.

Solution Brief

Cloud VDI

Adopt a robust, feature-rich cloud platform for virtual desktops and applications that can be used to deliver complete VDI infrastructure from the cloud. Or you can extend an existing on-premises VDI environment for desktop bursting, protection or proximity to applications running in AWS. Optimize infrastructure costs with flexible, consumption-based billing while paying only for what you use.

Solution Brief

Disaster Recovery

Another typical use case is disaster recovery. Customers are looking for an offsite approach with which they can prepare themselves for different kind of scenarios with “warm standby” or “active/active” configurations. There are different architectural options and also different solutions from VMware available, e.g.:

Hybrid Cloud Extension (HCX)

How can you bridge the gap between on-premises data centers and VMC on AWS to enable application migrations or workload mobility? HCX creates an encrypted, high-throughput, WAN-optimized, load-balanced, traffic-engineered hybrid interconnect automates the creation of network extensions.

In short: VMware HCX can interconnect different vSphere-based clouds and with that you achieve a fabric for workload mobility by using vMotion over different clouds. It even preserves existing network connections!

Imagine how much easier and faster application migrations can be done now.

Let’s see if there is a future, that customers need full workload mobility where regular migrations from and to different clouds can be done. Maybe there is a customer, who migrates workloads today from on-prem to VMC on AWS, tomorrow to Azure VMware Solution, the next week to Google Cloud VMware Engine, and in the end back to an on-premises data center where another fully managed service like VMC on Dell EMC is deployed. 😀

VMware Cloud on AWS with Tanzu Services

It was mentioned above already, VMware Cloud on AWS includes “Tanzu Kubernetes Service” and “Tanzu Mission Control Essentials”.

VMware Cloud with Tanzu Services has been introduced at VMworld 2021 as the “Easy path to enterprise-grade Kubernetes on a fully managed, multi-cloud ready IaaS and CaaS platform”:

VMware Cloud with Tanzu Services

 

This was also when Tanzu Services became available for VMC on AWS with the following capabilities:

  • Managed Tanzu Kubernetes Grid Service: Provision Tanzu Kubernetes clusters within a few minutes using a simple, fast, and self-service experience in the VMware Cloud console. The underlying SDDC infrastructure and capacity required for Kubernetes workloads is fully managed by VMware. Use vCenter Server for managing Kubernetes workloads by deploying Kubernetes clusters, provisioning role-based access and allocating capacity for Developer teams. Manage multiple TKG clusters as namespaces with observability, troubleshooting and resiliency in vCenter Server.
  • Built in support for Tanzu Mission Control Essentials: Attach upstream compliant Kubernetes clusters including Amazon EKS and Tanzu Kubernetes Grid clusters. Manage lifecycle for Tanzu Kubernetes Grid clusters and centralize platform operations for Kubernetes clusters using the Kubernetes management plane offered by Tanzu Mission Control. Tanzu Mission Control provides a global visibility across clusters and clouds and increases security and governance by automating operational tasks such as access and security management at scale.

VMware Cloud with Tanzu Services

Take a look at the VMware Tanzu Mission Control Feature Comparison Chart to better understand the feature set of TMC Essentials.

Did you know that the Tanzu Mission Control Standard Package is included with TMC Essentials?

As of November 2021, new clusters registered with TMC will have the Carvel package manager (the kapp-controller), deployed within the cluster. The “Catalog” page in the Tanzu Mission Control console allows you to view packages available from the Tanzu Standard repository (and your own custom Carvel package repositories) and install them in your Kubernetes clusters.

Tanzu Mission Control Packages

Application Transformer for VMware Tanzu for VMC on AWS

VMware announced the tech preview for Application Transformer for VMware Tanzu for VMware Cloud on AWS in September 2021.

Application Transformer for VMware Tanzu is a tool that aids organizations in discovering application types, visualizing application topology, choosing a modernization approach based on scores, and containerizing and migrating suitable legacy applications to enhance business outcomes. As an agentless tool, Application Transformer for Tanzu utilizes the VMware vCenter API to introspect VMs across an entire vSphere or VMware Cloud on AWS-based data center.

Application Transformer can help you to convert virtual machines and application components to OCI-compliant container images, that then can be deployed into the Tanzu Kubernetes stack.

There are several ways how customers get access to Application Transformer for VMware Tanzu:

Good news for everyone is that Application Transformer for VMware Tanzu became generally available in February 2022. With this, VMware Cloud on AWS customers also have limited access to this offering from now on. The access is through integration with VMware Cloud console. If customers desire full access to Application Transformer, they need to buy Tanzu Standard, Tanzu Advanced, Tanzu for Kubernetes Operations, or App Navigator.

Features & Roadmap

VMware provides a lot of information about the features and roadmap of VMware Cloud on AWS.

VMC on AWS FAQ

There is a large collection of FAQs available that can be found here.

Multi-Tenancy on VMware Cloud Foundation with vRealize Automation and Cloud Director

Multi-Tenancy on VMware Cloud Foundation with vRealize Automation and Cloud Director

In my article VMware Cloud Foundation And The Cloud Management Platform Simply Explained I wrote about why customers need a VMware Cloud Foundation technology stack and what a VMware cloud management platform is.

One of the reasons and one of the essential characteristics of a cloud computing model I mentioned is resource pooling.

By the National Institute of Standards and Technology (NIST) resource pooling is defined with the following words:

The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer demand.
There is a sense of location independence in that the customer generally has no
control or knowledge over the exact location of the provided resources but may be
able to specify location at a higher level of abstraction (e.g., country, state, or
data center).

This time I would like to focus on multi-tenancy and how you can achieve that on top of VMware Cloud Foundation (VCF) with Cloud Director (formerly known as vCloud Director) and vRealize Automation, which both could be part of a VMware cloud management platform (CMP).

Multi-Tenancy

There are many understandings around about multi-tenancy and different people have different definitions for it.

If we start from the top of an IT infrastructure, we will have application or software multi-tenancy with a single instance of an application serving multiple tenants. And in the past even running on the same virtual or physical server. In this case the multi-tenancy feature is built into the software, which is commonly accessed by a group of users with specific permissions. Each tenant gets a dedicated or isolated share of this application instance.

Coming from the bottom of the data center, multi-tenancy describes the isolation of resources (compute, storage) and networks to deliver applications. The best example here are (cloud) services providers.

Their goal is to create and provide virtual data centers (VDC) or a virtual private cloud (VPC) on top of the same physical data center infrastructure – for different tenants aka customers. Normally, the right VMware solution for this requirement and service providers would be Cloud Director, but this is maybe not completely true anymore with the release of vRealize Automation 8.x. 

To make it easier for all of us, I’ll call Cloud Director and vCloud Director “vCD” from now on.

VMware Cloud Director (formerly vCloud Director)

Cloud Director is a product exclusively for cloud service providers via the VMware Cloud Provider Program (VCPP). Originally released in 2010, it enables service providers (SPs) to provision SDDC (Software-Defined Data Center) services as complete virtual data centers. vCD also keeps resources from different tenants isolated from each other.

Within vCD a unit of tenancy is called Organization VDC (OrgVDC). It is defined as a set of dedicated compute (CPU, RAM), storage and network resources. A tenant can be bound to a single OrgVDC or can be composed of multiple Organization VDCs. This is typically known as Infrastructure as a Service (IaaS).

A provider virtual data center (PVDC) is a grouping of compute, storage, and network resources from a single vCenter Server instance. Multiple organizations/tenants can share provider virtual data center resources.

Cloud Director Resource Abstraction

A lot of customers and VCPP partners have now started to offer their cloud services (IaaS, PaaS, SaaS etc.) based on VMware Cloud Foundation. For private and hybrid cloud scenarios, but also in the public cloud as a managed cloud service (VMware Cloud on AWS, Azure VMware Solution, Google Cloud VMware Engine, Alibaba Cloud VMware Solution and more).

Important: I assume that you are familiar with VCF, its core components (ESXi, vSAN, NSX, SDDC Manager) and architecture models (standard as the preferred).

Cloud Director components are currently not part of the VCF lifecycle automation, but it is a roadmap item!

Cloud Director Resource Hosting Models

vCD offers multiple hosting models:

  • In the shared hosting model, multiple tenant workloads run all together on the same
    resource groups without any performance assurance
  • In the reserved hosting model, performance of workloads is assured by resource
    reservation.
  • In the physical hosting model, hardware is dedicated to a single tenant and performance
    is assured by the allocated hardware

Tenant Using Shared Hosting on VCF Workload Domain

In this use case a tenant is using shared hosting backed by a VMware Cloud Foundation workload domain. A workload domain, which is mapped to a provider VDC.

vCD VCF Shared

Tenant Using Shared Hosting and Reserved Hosting on Multiple VCF Workload Domains

This use case describes the example of customer using shared and reserved hosting backed by multiple VCD workload domains. Here each cluster has a single resource pool mapped to a single PVDC.

vCD VCF Shared Reserved

Tenant Using Physical Hosting and Central Point of Management (CPOM)

The last example shows a single customer using physical hosting. You will notice that there is also a vSphere with
Kubernetes workload domain. VMware Cloud Foundation automates the installation of vSphere with Kubernetes (Tanzu) which makes it incredibly easy to deploy and manage.

You can see that there is an “SDDC” box on top of the Kubernetes Cluster vCenter, which is attached to
the “SDDC Proxy” entity. vCD can act as an HTTP/S proxy server between tenants and the
underlying vSphere environment in VMware Cloud Foundation. An SDDC proxy is an
access point to a component from an SDDC, for example, a vCenter Server instance, an ESXi host, or
an NSX Manager instance.

The vCD becomes the central point of management (CPOM) in this case and the customer gets a complete dedicated SDDC with vCenter access.

vCD VCF Physical CPOM

Note: Since vCD 9.7 it is possible to present for example a vCenter Server instance securely to a tenant’s organization using the Cloud Director user interface. This is how you could build your own VMC-on-AWS-like cloud offering!

Cloud Director CPOM

All 3 Tenants Together

Finally, we put it all together. In the first use case we can see that different customers are sharing resources from a
single PVDC. We can also see that resources from a single vCenter can be split across different provider virtual datacenters and that we can mix and match multi-tenants workload domains and workload domains offering dedicated private cloud all together.

vCD VCF All Together

Cloud Director Service and VMware Cloud on AWS

If you don’t want to extend or operate your own data center or cloud infrastructure anymore and provide a managed service to multiple customer, there are still options for you available backed by VMware Cloud Foundation as well.

Since October 2020 you have Cloud Director Service globally available, which delivers multi-tenancy to VMware Cloud on AWS for managed service providers (MSP).

VMware sees not only new, but also existing VCPP partners moving towards a mixed-asset portfolio, where their cloud management platform consists of a VCPP and MSP (VMware SaaS offerings) contract. This allows them for example to run vCD on-premises for their current customers and the onboarding of new tenants would happen in the public cloud with CDS and VMC on AWS.

vCD CDS Mixed Mode

Enterprise Multi-Tenancy with vRealize Automation

With the release of vRealize Automation 8.1 (vRA) VMware offered support for dedicated infrastructure multi-tenancy, created and managed through vRealize Suite Lifecycle Manager. This means vRealize Automation enables customers or IT providers to set up multiple tenants or organizations within each deployment.

Providers can set up multiple tenant organizations and allocate infrastructure. Each tenant manages its own projects (team structures), resources and deployments.

Enabling tenancy creates a new Provider (default) organization. The Provider Admin will create new tenants, add tenant admins, setup directory synchronization, and add users. Tenant admins can also control directory synchronization for their tenant and will grant users access to services within their tenant. Additionally, tenant admins will configure Policies, Governance, Cloud Zones, Profiles, access to content and provisioned resources; within their tenant. A single shared SDDC or separate SDDCs can be used among tenants depending on available resources.

vRealize Automation 8.1 Multi-Tenancy

With vRealize Automation 8.2, provider administrators got the ability to share infrastructure by creating and assigning Virtual Private Zones (VPZ) to tenant organizations.

Think of VPZs as a kind of container of infrastructure capacity and services which can be defined and allocated to a Tenant. You can add unique or shared cloud accounts, with associated compute, flavors, images, storage, networking, and tags to each VPZ. Each component offers the same configuration options you would see for a standalone configuration.

vRealize Automation 8.2 Multi-Tenancy

vRealize Automation and VMware Cloud Foundation

With the pretty new multi-tenancy and VPZ capability a new consumption model on top of VCF can be built. You (provider) would map the Cloud Zones (compute resources on vSphere (or AWS for example)) to a VCF workload domain.

The provider sets these cloud zones up for their customers and provides dedicated or shared infrastructure backed by Cloud Foundation workload domains.

This combination would allow you to build an enterprise VPC construct (like AWS for example), a logically isolated section of your provider cloud.

vRealize Automation and VMware Cloud Foundation

SDDC Manager Integration and VMware Cloud Foundation (VCF) Cloud Account

Since the vRA 8.2 release customers are also able to configure a SDDC Manager integration and on-board workload domains as VMware Cloud Foundation cloud accounts into the VMware Cloud Assembly service.

VMware Cloud Director or vRealize Automation?

You wonder if vRealize Automation could replace existing vCD installations? Or if both cloud management platforms can do the same?

I can assure you, that you can provide a self-service provisioning experience with both solutions and that you can provide any technology or cloud service “as a service”. Both have in common to be backed by Cloud Foundation, have some form of integration (vRA) and can be built by a VMware Validated Design (VVD).

vCD is known to be a service provider solution, where vRA is more common in enterprise environments. VMware has VCPP partners, that use Cloud Director for their external customers and vRealize Automation for their internal IT and customers.

If you are looking for a “cloud broker” and Infrastructure as Code (IaC), because you also want to provision workloads on AWS, Azure or GCP as well, then vRealize Automation is the better solution since vCD doesn’t offer this deep integration and these deployment options yet.

Depending on your multi-tenant needs and if you for example only have chosen vCD in the past, because of the OrgVDC and resource pooling feature, vRealize Automation would be enough and could replace vCD in this case.

It is also very important to understand how your current customer onboarding process and operational model look like:

  • How do you want to create a new tenant? 
  • How do you want to onboard/migrate existing customer workloads to your provider infrastructure?
  • Do you need versioning of deployments or templates?
  • Do customers require access to the virtual infrastructure (e.g. vCenter or OrgVDC) or do you just provide SaaS or PaaS?
  • Do customers need a VPN or hybrid cloud extension into your provider cloud?
  • How would you onboard non-vSphere customers (Hyper-V, KVM) to your vSphere-based cloud?
  • Does your customer rely on other clouds like AWS or Azure?
  • How do you do billing for your vSphere-based cloud or multi-cloud environment?
  • What is your Kubernetes/container strategy?
  • And 100 other things 😉

There are so many factors and criteria to talk about, which would influence such a decision. There is no right or wrong answer to the question, if it should be VMware Cloud Director or vRealize Automation. Use what makes sense.

Which could also be a combination of both.