Modern Application Monitoring with VMware Tanzu and vRealize

Modern Application Monitoring with VMware Tanzu and vRealize

The complexity of applications has increased because of new cloud technologies and new application architectures. Since organizations adopt and embrace the DevOps mindset, developers and IT operations are closer than ever. Developers are now part of the team operating the distributed systems.

Businesses must figure out how they know about system failures and need to have an understanding “what” is broken (symptom) and “why” (possible cause) something is broken.

Let’s talk about application performance management (APM) and enterprise observability. 🙂

Monitoring

It was around the year 2012 or 2013 when I had to introduce a new monitoring solution for a former employer who was a cloud service provider. I think Nagios was the state-of-the-art technology back then and I replaced it PRTG Network Monitor from Paessler.

When we onboarded a new customer infrastructure or application, the process was always the same. I had to define the metrics to collect and then put those metrics on a dashboard. It was very important to set alerts based on thresholds or conditions. Everyone knew back then that this approach wasn’t the best, but we didn’t have any other choice.

PRTG Sensor View

If an IP was not pingable or a specific port of a server or application was down for 60 seconds, an alert popped up and an e-mail had been sent to the IT helpdesk. And in the dashboard you could see sensors switching from a green to a red state.

To simplify the troubleshooting process and to have some a logical application view, I had to create some dependencies between sensors. This was probably the only way to create something like an application (dependency) mapping.

When users worked on a virtual desktop or on a Windows Terminal Server, we “measured” the user experience and application performance based on network latency and server resource usage based on CPU and RAM mostly.

Observability

Observability enables you to drill down into the distributed services and systems (hardware components, containers, microservices) that make up an application.

Monitoring and observability are not the same thing. As described before, monitoring is the process of collection metrics and alerts that one can monitor the health and performance of components like network devices, databases, servers or VMs.

Observability helps you to understand complex architectures and interactions between elements in this architecture. It also allows you to troubleshoot performance issues, identify root causes for failures faster and helps you to optimize your cloud native infrastructure and applications.

In other words, observability can help you to speed up mean time to detection (MTTD) and mean time to resolution (MTTR) for infrastructure and application failures.

There are three golden telemetry signals to achieve observability (source):

  • Logs: Logs are the abiding records of discrete events that can identify unpredictable behavior in a system and provide insight into what changed in the system’s behavior when things went wrong. It’s highly recommended to ingest logs in a structured way, such as in JSON format so that log visualization systems can auto-index and make logs easily queryable.
  • Metrics: Metrics are considered as the foundations of monitoring. They are the measurements or simply the counts that are aggregated over a period of time. Metrics will tell you how much of the total amount of memory is used by a method, or how many requests a service handles per second.
  • Traces: A single trace displays the operation as it moves from one node to another in a distributed system for an individual transaction or request. Traces enable you to dig into the details of particular requests to understand which components cause system errors, monitor flow through the modules, and discover the bottlenecks in the performance of the system.

Tanzu Observability Tracing

When using observability during app development, it can also improve the developer experience and productivity.

Tanzu Observability Services

The VMware Tanzu portfolio currently has four different editions:

Different Tanzu Observability services are available for different components and Tanzu editions.

Tanzu Standard Observability

Tanzu Standard includes the leading open-source projects Prometheus and Grafana for platform monitoring (and Fluent Bit for log forwarding).

Tanzu Kubernetes Grid provides monitoring with the open-source Prometheus and Grafana services. You deploy these services on your cluster and can then take advantage of Grafana visualizations and dashboards. As part of the integration, you can set up Alertmanager to send alerts to Slack or use custom Webhooks alert notifications.

Tanzu Kubernetes Grid architecture

Tanzu Standard Observability is comprised of:

  • Fluent Bit is an open-source log processor and forwarder which allows you to collect any data like metrics and logs from different sources, enrich them with filters and send them to multiple destinations. It’s the preferred choice for containerized environments like Kubernetes.
  • Grafana is a multi-platform open-source analytics and interactive visualization web application. It provides charts, graphs, and alerts for the web when connected to supported data sources.
  • Prometheus is a free software application used for event monitoring and alerting. It records real-time metrics in a time series database built using a HTTP pull model, with flexible queries and real-time alerting.

Note: VMware only provides advisory (best effort) guidance on Prometheus and Grafana for use with Tanzu Kubernetes Grid. The installation, configuration and upgrades are beyond the current scope of VMware’s advisory support.

Tanzu Advanced Observability

In May 2017 VMware acquired Wavefront which is now part of the Tanzu portfolio and called “Tanzu Observability” (TO).

TO is a SaaS-based metrics monitoring and analytics platform that handles enterprise-scale requirements of modern cloud native application.

Compared to the Grafana/Prometheus, one would say that Tanzu Observability is a true enterprise-grade observability platform. According to the GigaOm Cloud Observability Report VMware Tanzu Observability is one of the strong leaders among Dynatrace and Splunk just to name a few.

Tanzu Observability is best suited for large organization and provides a consumption-based pricing that is based on the rate at which you send metric data to Tanzu Observability during the course of each month. This gives you the flexibility to start with any size want and scale up/down as needed. It’s not dependent on number of hosts or the number of users. 

Tanzu Observability CIO Dashboard

Tanzu Observability allows you to collect data from different sources and provides integrations to over 250 technologies including different public clouds, web application and services, big data frameworks, data stores, other monitoring tools, operating systems / hosts, and many more.

Tanzu Observability Integrations

While data retention with Prometheus is limited to a maximum of 14 days, VMware allows you to send Prometheus data to Tanzu Observability for long-term data retention (up to 18 months at full granularity).

Just announced at VMworld 2021, VMware has added artificial intelligence and machine learning (AI/ML) root cause capabilities…

Tanzu Observability AI Powered Root Cause Analysis

…and created an integration between Tanzu Observability and vRealize Operations Cloud.

Through this integration, developers and SREs can now view vRealize Operations Cloud metrics alongside all the metrics, histograms, and traces collected by Tanzu Observability from other sources for a more holistic view of business-critical applications and infrastructure.

If you are attending VMworld, check out the sessions below to learn more about Tanzu Observability.

  • APP1308: Observability for Modern Application and Kubernetes Environments
  • APP2648: Implement Observability for Kubernetes Clusters and Workloads in Minutes
  • VI2630: Best Practices and Reference Framework for Implementing Observability
  • UX2551: Move from Traditional Monitoring to Observability and SRE – Design Studio
  • VMTN2810: Lost in Containers? Enhance Observability with Actionable Visualization
  • 2965: Kubernetes Cluster Operations, Monitoring and Observability
  • 2957: Build a Data Analytics Platform in Minutes Using Deployment Blueprints
  • APP2677: Meet the Experts: VMware Tanzu Observability by Wavefront
  • VMTN3230: Observe Application internals Holistically
  • VI1448: Take a Modern Approach to Achieve Application Resiliency
  • APP1319: Transforming Customer Experiences with VMware’s App Modernization Platform

Integration with other Tanzu Products

Tanzu Observability is fully integrated within the Tanzu family with OOTB integrations with:

Kubernetes Monitoring in vRealize Operations

Tanzu Observability provides “Kubernetes Observability” and OOTB integrations with RedHat OpenShift, Azure Kubernetes Service (AKS), Amazon EKS and Google GKE for example.

Tanzu Observability Kubernetes Monitoring

vRealize Operations (vROps) is also able to monitor multiple Kubernetes environments like VMware Tanzu Kubernetes Grid, RedHat OpenShift, Amazon EKS, Azure AKS or Google GKE. That is made possible with the vROps Management Pack for Kubernetes.

Using vRealize Operations Management Pack for Kubernetes (needs vROps 8.1 or later), you can monitor, troubleshoot, and optimize the capacity management for Kubernetes clusters. Below some of the additional capabilities that this management pack delivers:

  • Auto-discovery of Tanzu Kubernetes Grid (TKG) or Tanzu Mission Control (TMC) Kubernetes clusters.
  • Complete visualization of Kubernetes cluster topology, including namespaces, clusters, replica sets, nodes, pods, and containers.
  • Performance monitoring for Kubernetes clusters.
  • Out-of-the-box dashboards for Kubernetes constructs, which include inventory and configuration.
  • Multiple alerts to monitor the Kubernetes clusters.
  • Mapping Kubernetes nodes with virtual machine objects.
  • Report generation for capacity, configuration, and inventory metrics for clusters or pods.

vRealize Operations K8s Monitoring

Note: Kubernetes monitoring is available in vRealize Operations Advanced.

There is also a Prometheus integration, that enables vRealize Operations Manager to retrieve metrics directly from Prometheus:

Diagram Description automatically generated

Note: vRealize Operations can also integrate with your existing application performance management systems. vROps offers integrations with App Dynamics, DataDog, Dynatrace and New Relic.

Conclusion

There are different options available within the VMware Tanzu and vRealize when it comes to Kubernetes operations, monitoring and observability.

Depending on your current needs and toolset you’ll have different options and integration possibilities. 

VMware’s portfolio gives you the choice to use open-source software like Grafana/Prometheus, leverage an existing vRealize Operations deployment or to get an enterprise-grade observability and analytics platform like Tanzu Observability.

If you are looking for and end-to-end monitoring stack aka 360-degree visibility for your K8s environments and clouds, VMware Tanzu and the vRealize Suite give you the following products:

  1. Applications – Tanzu Observability
  2. Kubernetes Cluster – Tanzu Observability, vRealize Operations, vRealize Network Insight, vRealize Log Insight
  3. Network Layer – vRealize Operations, vRealize Network Insight, vRealize Log Insight
  4. Virtualization Layer – vRealize Operations, vRealize Network Insight, vRealize Log Insight

 

VMworld 2021 – Summary of VMware Projects

VMworld 2021 – Summary of VMware Projects

On day 1 of VMworld 2021 we have heard and seen a lot of super exciting announcements. I believe everyone is excited about all the news and innovations VMware has presented so far.

I’m not going to summarize all the news from day 1 or day 2 but thought it might be helpful to have an overview of all the VMware projects that have been mentioned during the general session and solution keynotes.

Project Cascade

VMware Project Cascade

Project Cascade will provide a unified Kubernetes interface for both on-demand infrastructure (IaaS) and containers (CaaS) across VMware Cloud – available through an open command line interface (CLI), APIs, or a GUI dashboard.  Project Cascade will be built on an open foundation, with the open-sourced VM Operator as the first milestone delivery for Project Cascade that enables VM services on VMware Cloud.

VMworld 2021 session: Solution Keynote: The VMware Multi-Cloud Computing Infrastructure Strategy of 2021 [MCL3217]

Project Capitola

VMware Project Capitola

Project Capitola is a software-defined memory implementation that will aggregate tiers of different memory types such as DRAM, PMEM, NVMe and other future technologies in a cost-effective manner, to deliver a uniform consumption model that is transparent to applications.

VMworld 2021 session: Introducing VMware Project Capitola: Unbounding the ‘Memory Bound’ [MCL1453] and How vSphere Is Redefining Infrastructure For Running Apps In the Multi-Cloud Era [MCL2500]

Project Ensemble

VMware Project Ensemble

Project Ensemble integrates and automates multi-cloud management with vRealize. This means that all the different VMware cloud management capabilities—self-service, elasticity, metering, and more—are in one place. You can access all the data, analytics, and workflows to easily manage your cloud deployments at scale.

VMworld 2021 session: Introducing Project Ensemble Tech Preview [MCL1301]

Project Arctic

VMware Project Arctic

Project Arctic is “the next evolution of vSphere” and is about bringing your own hardware while taking advantage of VMware Cloud offerings to enable a hybrid cloud experience. Arctic natively integrates cloud connectivity into vSphere and establishes hybrid cloud as the default operating model.

VMworld 2021 session: What’s New in vSphere [APP1205] and How vSphere Is Redefining Infrastructure For Running Apps In the Multi-Cloud Era [MCL2500]

Project Monterey

VMware Project Monterey

Project Monterey was announced in the VMworld 2020 keynote. It is about SmartNICs that will redefine the data center with decoupled control and data planes for management, networking, storage and security for VMware ESXi hosts and bare-metal systems.

VMworld 2021 session: 10 Things You Need to Know About Project Monterey [MCL1833] and How vSphere Is Redefining Infrastructure For Running Apps In the Multi-Cloud Era [MCL2500]

Project Iris

I don’t remember anymore which session mentioned Project Iris but it is about the following:

Project Iris discovers and analyzes an organization’s full app portfolio; recommends which apps to rehost, replatform, or refactor; and enables customers to adapt their own transformation journey for each app, line of business, or data center.

Project Pacific

Project Pacific was announced at VMworld 2019. It is about re-architecting vSphere to integrate and embed Kubernetes and is known as “vSphere with Tanzu” (or TKGS) today. In other words, Project Pacific transformed vSphere into a Kubernetes-native platform with an Kubernetes control plane integrated directly into ESXi and vCenter. Pacific is part of the Tanzu portofolio.

VMworld 2019 session: Introducing Project Pacific: Transforming vSphere into the App Platform of the Future [HBI4937BE]

Project Santa Cruz

VMware Project Santa Cruz

Project Santa Cruz is a new integrated offering from VMware that adds edge compute and SD-WAN together to give you a secure, scalable, zero touch edge run time at all your edge locations. It connects your edge sites to centralized management planes for both your networking team and your cloud native infrastructure team. This solution is OCI compatible: if your app runs in a container, it can run on Santa Cruz.

VMworld 2021 session: Solution Keynote: What’s Next? A Look inside VMware’s Innovation Engine [VI3091]

Project Dawn Patrol

Project Dawn Patrol

So far, Project Dawn Patrol was only mentioned during the general session. “It will give you full visibility with a map of all your cloud assets and their dependencies”, Dormain Drewitz said.

VMworld 2021 session: General Session: Accelerating Innovation, Strategies for Winning Across Clouds and Apps [GEN3103]

Project Radium

VMware Project Radium

Last year VMware introduced vSphere Bitfusion which allow shared access to a pool of GPUs over a network. Project Radium expands the fetature set of Bitfusion to other architectures and will support AMD, Graphcore, Intel, Nvidia and other hardware vendors for AI/ML workloads.

VMworld 2021 session: Project Radium: Bringing Multi-Architecture compute to AI/ML workloads [VI1297]

Project IDEM

IDEM has been described as an “easy to use management automation technology”.

VMworld 2021 session: Solution Keynote: What’s Next? A Look inside VMware’s Innovation Engine [VI3091] and Next-Generation SaltStack: What Idem Brings to SaltStack [VI1865]

Please comment below or let me know via Twitter or LinkedIn if I missed a new or relevant VMware project. 😉

Must Watch VMworld Multi-Cloud Sessions

I recently wrote a short blog about some of the sessions I recommend to customers, partners and friends.

If you would like to know more about the VMware multi-cloud strategy and vision, have a look at some of the sessions below:

VMworld 2021 Must Watch Sessions

 

VMworld 2021 – My Content Catalog and Session Recommendation

VMworld 2021 – My Content Catalog and Session Recommendation

VMworld 2021 is going to happen from October 6-7, 2021 (EMEA). This year you can expect so many sessions and presentations about the options you have when combining different products together, that help you to reduce complexity, provide more automation and therefore create less overhead.

Let me share my 5 personal favorite picks and also 5 recommended sessions based on the conversations I had with multiple customers this year.

My 5 Personal Picks

10 Things You Need to Know About Project Monterey [MCL1833]

Project Monterey was announced in the VMworld 2020 keynote. There has been tremendous work done since then. Hear Niels Hagoort and Sudhansu Jain talking about SmartNICs and how they will redefine the data center with decoupled control and data planes – for ESXi hosts and bare-metal systems. They are going to cover and demo the overall architecture and use cases!

Upskill Your Workforce with Augmented and Virtual Reality and VMware [VI1596]

Learn from Matt Coppinger how augmented realited (AR) and virtual reality (VR) are transforming employee productivity, and how these solutions can be deployed and managed using VMware technologies. Matt is going to cover the top enterprise use cases for AR/VR as well as the challenges you might face deploying these emerging technologies. Are you interested how to architect and configure VMware technologies to deploy and manage the latest AR/VR technology, applications and content? If yes, then this session is also for you.

Addressing Malware and Advanced Threats in the Network [SEC2027] (Tech+ Pass Only)

I am very interested to learn more cybersecurity. With Chad Skipper VMware has an expert who can give insights on how the Network Detection and Response (NDR) capabilities if NSX Advanced Threat Prevention provide visibility, detection and prevention of advanced threats.

60 Minutes of Non-Uniform Memory Access (NUMA) 3rd Edition [MCL1853]

Learn more about NUMA from Frank Denneman. You are going to learn more about the underlying configuration of a virtual machine and discover the connection between the Generapl-Purpose Graphics Processing Unit (GPGPU) and the NUMA node. You will also understand after how your knowledge of NUMA concepts in your cluster can help the developer by aligning the Kubernetes nodes to the physical infrastructure with the help of VM Service.

Mount a Robust Defense in Depth Strategy Against Ransomware [SEC1287]

Are you interested to learn more about how to protect, detect, respond to and recover from cybersecurity attacks across all technology stacks, regardless of their purpose or location? Learn more from Amanda Blevins about the VMware solutions for end users, private clouds, public clouds and modern applications.

5 Recommended Sessions based on Customer Conversations

Cryptographic Agility: Preparing for Quantum Safety and Future Transition [VI1505]

A lot of work is needed to better understand cryptographic agility and how we can address and manage the expected challenges that come with quantum computing. Hear VMware’s engineers from the Advanced Technology Group talking about the requirements of crypto agility and VMware’s recent research work on post-quantum cryptography in the VMware Unified Access Gateway (UAG) project.

Edge Computing in the VMware Office of the CTO: Innovations on the Horizon [VI2484]

Let Chris Wolf give you some insight into VMware’s strategic direction in support of edge computing. He is going to talk about solutions that will drive down costs while accelerating the velocity and agility in which new apps and services can be delivered to the edge.

Delivering a Continuous Stream of More Secure Containers on Kubernetes [APP2574]

In this session one can see how you can use two capabilities in VMware Tanzu Advanced, Tanzu Build Service and Tanzu Application Catalog, to feed a continuous stream of patched and compliant containers into your continuous delivery (CD) system. A must attend session delivered by David Zendzian, the VMware Tanzu Global Field CISO.

A Modern Firewall For any Cloud and any Workload [SEC2688]

VMware NSX firewall reimagines East-West security by using a distributed- and software-based approach to attach security policies to every workload in any cloud. Chris Kruegel gives you insights on how to stop lateral movement with advanced threat prevention (ATP) capabilities via IDS/IPS, sandboxing, NTA and NDR.

A Practical Approach for End-to-End Zero Trust [SEC2733]

Hear different the VMware CTOs Shawn Bass, Pere Monclus and Scott Lundgren talking about a zero trust approach. Shawn and the others will discuss specific capabilities that will enable customers to achieve a zero trust architecture that is aligned to the NIST guidance and covers secure access for users as well secure access to workloads.

Enjoy VMworld 2021! 🙂

 

Application Modernization and Multi-Cloud Portability with VMware Tanzu

Application Modernization and Multi-Cloud Portability with VMware Tanzu

It was 2019 when VMware announced Tanzu and Project Pacific. A lot has happened since then and almost everyone is talking about application modernization nowadays. With my strong IT infrastructure background, I had to learn a lot of new things to survive initial conversations with application owners, developers and software architects. And in the same time VMware’s Kubernetes offering grew and became very complex – not only for customers, but for everyone I believe. 🙂

I already wrote about VMware’s vision with Tanzu: To put a consistent “Kubernetes grid” over any cloud

This is the simple message and value hidden behind the much larger topics when discussing application modernization and application/data portability across clouds.

The goal of this article is to give you a better understanding about the real value of VMware Tanzu and to explain that it’s less about Kubernetes and the Kubernetes integration with vSphere.

Application Modernization

Before we can talk about the modernization of applications or the different migration approaches like:

  • Retain – Optimize and retain existing apps, as-is
  • Rehost/Migration (lift & shift) – Move an application to the public cloud without making any changes
  • Replatform (lift and reshape) – Put apps in containers and run in Kubernetes. Move apps to the public cloud
  • Rebuild and Refactor – Rewrite apps using cloud native technologies
  • Retire – Retire traditional apps and convert to new SaaS apps

…we need to have a look at the palette of our applications:

  • Web Apps – Apache Tomcat, Nginx, Java
  • SQL Databases – MySQL, Oracle DB, PostgreSQL
  • NoSQL Databases – MongoDB, Cassandra, Prometheus, Couchbase, Redis
  • Big Data – Splunk, Elasticsearch, ELK stack, Greenplum, Kafka, Hadoop

In an app modernization discussion, we very quickly start to classify applications as microservices or monoliths. From an infrastructure point of view you look at apps differently and call them “stateless” (web apps) or “stateful” (SQL, NoSQL, Big Data) apps.

And with Kubernetes we are trying to overcome the challenges, which come with the stateful applications related to app modernization:

  • What does modernization really mean?
  • How do I define “modernization”?
  • What is the benefit by modernizing applications?
  • What are the tools? What are my options?

What has changed? Why is everyone talking about modernization? Why are we talking so much about Kubernetes and cloud native? Why now?

To understand the benefits (and challenges) of app modernization, we can start looking at the definition from IBM for a “modern app”:

“Application modernization is the process of taking existing legacy applications and modernizing their platform infrastructure, internal architecture, and/or features. Much of the discussion around application modernization today is focused on monolithic, on-premises applications—typically updated and maintained using waterfall development processes—and how those applications can be brought into cloud architecture and release patterns, namely microservices

Modern applications are collections of microservices, which are light, fault tolerant and small. Microservices can run in containers deployed on a private or public cloud.

Which means, that a modern application is something that can adapt to any environment and perform equally well.

Note: App modernization can also mean, that you must move your application from .NET Framework to .NET Core.

I have a customer, that is just getting started with the app modernization topic and has hundreds of Windows applications based on the .NET Framework. Porting an existing .NET app to .NET Core requires some work, but is the general recommendation for the future. This would also give you the option to run your .NET Core apps on Windows, Linux and macOS (and not only on Windows).

A modern application is something than can run on bare-metal, VMs, public cloud and containers, and that easily integrates with any component of your infrastructure. It must be something, that is elastic. Something, that can grow and shrink depending on the load and usage. Since it is something that needs to be able to adapt, it must be agile and therefore portable.

Cloud Native Architectures and Modern Designs

If I ask my VMware colleagues from our so-called MAPBU (Modern Application Platform Business Unit) how customers can achieve application portability, the answer is always: “Cloud Native!”

Many organizations and people see cloud native as going to Kubernetes. But cloud native is so much more than the provisioning and orchestration of containers with Kubernetes. It’s a about collaboration, DevOps, internal processes and supply chains, observability/self-healing, continuous delivery/deployment and cloud infrastructure.

There are so many definitions around “cloud native”, that Kamal Arora from Amazon Web Services and others wrote the book “Cloud Native Architecture“, which describes a maturity model. This model helps you to understand, that cloud native is more a journey than only restrictive definition.

Cloud Native Maturity Model

The adoption of cloud services and applying an application-centric design are very important, but the book also mentions that security and scalability rely on automation. And this for example could bring the requirement for Infrastructure as Code (IaC).

In the past, virtualization – moving from bare-metal to vSphere – didn’t force organizations to modernize their applications. The application didn’t need to change and VMware abstracted and emulated the bare-metal server. So, the transition (P2V) of an application was very smooth and not complicated.

And this is what has changed today. We have new architectures, new technologies and new clouds running with different technology stacks. We have Kubernetes as framework, which requires applications to be redesigned for these platforms.

That is the reason why enterprises have to modernize their applications.

One of the “five R’s” mentioned above is the lift and shift approach. If you don’t want or need to modernize some of your applications, but move to the public cloud in an easy, fast and cost efficient way, have a look at VMware’ hybrid cloud extension (HCX).

In this article I focus more on the replatform and refactor approaches in a multi-cloud world.

Kubernetize and productize your applications

Assuming that you also define Kubernetes as the standard to orchestrate your containers where your microservices are running in, usually the next decision would be about the Kubernetes “product” (on-prem, OpenShift, public cloud).

Looking at the current CNCF Cloud Native Landscape, we can count over 50 storage vendors and over 20 networks vendors providing cloud native storage and networking solutions for containers and Kubernetes.

Talking to my customers, most of them mention the storage and network integration as one of their big challenges with Kubernetes. Their concern is about performance, resiliency, different storage and network patterns, automation, data protection/replication, scalability and cloud portability.

Why do organizations need portability?

There are many use cases and requirements that portability (infrastructure independence) becomes relevant. Maybe it’s about a hardware refresh or data center evacuation, to avoid vendor/cloud lock-in, not enough performance with the current infrastructure or it could be about dev/test environments, where resources are deployed and consumed on-demand.

Multi-Cloud Application Portability with VMware Tanzu

To explore the value of Tanzu, I would like to start by setting the scene with the following customer use case:

In this case the customer is following a cloud-appropriate approach to define which cloud is the right landing zone for their applications. They decided to develop new applications in the public cloud and use the native services from Azure and AWS. The customers still has hundreds of legacy applications (monoliths) on-premises and didn’t decide yet, if they want to follow a “lift and shift and then modernize” approach to migrate a number applications to the public cloud.

Multi-Cloud App Portability

But some of their application owners already gave the feedback, that their applications are not allowed to be hosted in the public cloud, have to stay on-premises and need to be modernized locally.

At the same time the IT architecture team receives the feedback from other application owners, that the journey to the public cloud is great on paper, but brings huge operational challenges with it. So, IT operations asks the architecture team if they can do something about that problem.

Both cloud operations for Azure and AWS teams deliver a different quality of their services, changes and deployments take longer with one of their public clouds, they have problems with overlapping networks, different storage performance characteristics and APIs.

Another challenge is the role-based access to the different clouds, Kubernetes clusters and APIs. There is no central log aggregation and no observability (intelligent monitoring & alerting). Traffic distribution and load balancing are also other items on this list.

Because of the feedback from operations to architecture, IT engineering received the task to define a multi-cloud strategy, that solves this operational complexity.

Notes: These are the regular multi-cloud challenges, where clouds are the new silos and enterprises have different teams with different expertise using different management and security tools.

This is the time when VMware’s multi-cloud approach Tanzu become very interesting for such customers.

Consistent Infrastructure and Management

The first discussion point here would be the infrastructure. It’s important, that the different private and public clouds are not handled and seen as silos. VMware’s approach is to connect all the clouds with the same underlying technology stack based on VMware Cloud Foundation.

Beside the fact, that lift and shift migrations would be very easy now, this approach brings two very important advantages for the containerized workloads and the cloud infrastructure in general. It solves the challenge with the huge storage and networking ecosystem available for Kubernetes workloads by using vSAN and NSX Data Center in any of the existing clouds. Storage and networking and security are now integrated and consistent.

For existing workloads running natively in public clouds, customers can use NSX Cloud, which uses the same management plane and control plane as NSX Data Center. That’s another major step forward.

Using consistent infrastructure enables customers for consistent operations and automation.

Consistent Application Platform and Developer Experience

Looking at organization’s application and container platforms, achieving consistent infrastructure is not required, but obviously very helpful in terms of operational and cost efficiency.

To provide a consistent developer experience and to abstract the underlying application or Kubernetes platform, you would follow the same VMware approach as always: to put a layer on top.

Here the solution is called Tanzu Kubernetes Grid (TKG), that provides a consistent, upstream-compatible implementation of Kubernetes, that is tested, signed and supported by VMware.

A Tanzu Kubernetes cluster is an opinionated installation of Kubernetes open-source software that is built and supported by VMware. In all the offerings, you provision and use Tanzu Kubernetes clusters in a declarative manner that is familiar to Kubernetes operators and developers. The different Tanzu Kubernetes Grid offerings provision and manage Tanzu Kubernetes clusters on different platforms, in ways that are designed to be as similar as possible, but that are subtly different.

VMware Tanzu Kubernetes Grid (TKG aka TKGm)

Tanzu Kubernetes Grid can be deployed across software-defined datacenters (SDDC) and public cloud environments, including vSphere, Microsoft Azure, and Amazon EC2. I would assume, that the Google Cloud is a roadmap item.

TKG allows you to run Kubernetes with consistency and makes it available to your developers as a utility, just like the electricity grid. TKG provides the services such as networking, authentication, ingress control, and logging that a production Kubernetes environment requires.

This TKG version is also known as TKGm for “TKG multi-cloud”.

VMware Tanzu Kubernetes Grid Service (TKGS aka vSphere with Tanzu)

TKGS is the option vSphere admins want to hear about first, because it allows you to turn a vSphere cluster to a platform running Kubernetes workloads in dedicated resources pools. TKGS is the thing that was known as “Project Pacific” in the past.

Once enabled on a vSphere cluster, vSphere with Tanzu creates a Kubernetes control plane directly in the hypervisor layer. You can then run Kubernetes containers by deploying vSphere Pods, or you can create upstream Kubernetes clusters through the VMware Tanzu Kubernetes Grid Service and run your applications inside these clusters.

VMware Tanzu Mission Control (TMC)

In our use case before, we have AKS and EKS for running Kubernetes clusters in the public cloud.

The VMware solution for multi-cluster Kubernetes management across clouds is called Tanzu Mission Control, which is a centralized management platform for the consistency and security the IT engineering team was looking for.

Available through VMware Cloud Services as SaaS offering, TMC provides IT operators with a single control point to provide their developers self-service access to Kubernetes clusters.

TMC also provides cluster lifecycle management for TKG clusters across environment such as vSphere, AWS and Azure.

It allows you to bring the clusters you already have in the public clouds or other environments (with Rancher or OpenShift for example) under one roof via the attachment of conformant Kubernetes clusters.

Not only do you gain global visibility across clusters, teams and clouds, but you also get centralized authentication and authorization, consistent policy management and data protection functionalities.

VMware Tanzu Observability by Wavefront (TO)

Tanzu Observability extends the basic observability provided by TMC with enterprise-grade observability and analytics.

Wavefront by VMware helps Tanzu operators, DevOps teams, and developers get metrics-driven insights into the real-time performance of their custom code, Tanzu platform and its underlying components. Wavefront proactively detects and alerts on production issues and improves agility in code releases.

TO is also a SaaS-based platform, that can handle the high-scale requirements of cloud native applications.

VMware Tanzu Service Mesh (TSM)

Tanzu Service Mesh, formerly known as NSX Service Mesh, provides consistent connectivity and security for microservices across all clouds and Kubernetes clusters. TSM can be installed in TKG clusters and third-party Kubernetes-conformant clusters.

Organizations that are using or looking at the popular Calico cloud native networking option for their Kubernetes ecosystem often consider an integration with Istio (Service Mesh) to connect services and to secure the communication between these services.

The combination of Calico and Istio can be replaced by TSM, which is built on VMware NSX for networking and that uses an Istio data plane abstraction. This version of Istio is signed and supported by VMware and is the same as the upstream version. TSM brings enterprise-grade support for Istio and a simplified installation process.

One of the primary constructs of Tanzu Service Mesh is the concept of a Global Namespace (GNS). GNS allows developers using Tanzu Service Mesh, regardless of where they are, to connect application services without having to specify (or even know) any underlying infrastructure details, as all of that is done automatically. With the power of this abstraction, your application microservices can “live” anywhere, in any cloud, allowing you to make placement decisions based on application and organizational requirements—not infrastructure constraints.

Note: On the 18th of March 2021 VMware announced the acquisition of Mesh7 and the integration of Mesh7’s contextual API behavior security solution with Tanzu Service Mesh to simplify DevSecOps.

Tanzu Editions

The VMware Tanzu portfolio comes with three different editions: Basic, Standard, Advanced

Tanzu Basic enables the straightforward implementation of Kubernetes in vSphere so that vSphere admins can leverage familiar tools used for managing VMs when managing clusters = TKGS

Tanzu Standard provides multi-cloud support, enabling Kubernetes deployment across on-premises, public cloud, and edge environments. In addition, Tanzu Standard includes a centralized multi-cluster SaaS control plane for a more consistent and efficient operation of clusters across environments = TKGS + TKGm + TMC

Tanzu Advanced builds on Tanzu Standard to simplify and secure the container lifecycle, enabling teams to accelerate the delivery of modern apps at scale across clouds. It adds a comprehensive global control plane with observability and service mesh, consolidated Kubernetes ingress services, data services, container catalog, and automated container builds = TKG (TKGS & TKGm) + TMC + TO + TSM + MUCH MORE

Tanzu Data Services

Another topic to reduce dependencies and avoid vendor lock-in would be Tanzu Data Services – a separate part of the Tanzu portfolio with on-demand caching (Tanzu Gemfire), messaging (Tanzu RabbitMQ) and database software (Tanzu SQL & Tanzu Greenplum) products.

Bringing all together

As always, I’m trying to summarize and simplify things where needed and I hope it helped you to better understand the value and capabilities of VMware Tanzu.

There are so many more products available in the Tanzu portfolio, that help you to build, run, manage, connect and protect your applications. In case you are interested to read more about VMware Tanzu, the have a look at my article 10 Things You Didn’t Know About VMware Tanzu.

If you would like to know more about application and cloud transformation make sure to attend the 45 minute VMware event on March 31 (Americas) or April 1 (EMEA/APJ)!

Data Center as a Service based on VMware Cloud Foundation

Data Center as a Service based on VMware Cloud Foundation

IT organizations are looking for consistent operations, which is enabled by consistent infrastructure. Public cloud providers like AWS and Microsoft offer an extension of their cloud infrastructure and native services to the private cloud and edge, which is also known as Data Center as a Service.

Amazon Web Services (AWS) provides a fully managed service with AWS Outposts, that offers AWS infrastructure, AWS services, APIs and their tools to any data center or on-premises facility.

Microsoft has Azure Stack is even working on a new Azure Stack hybrid cloud solution that is codenamed “Fiji” to provide the ability to run Azure as a managed local cloud.

What do these offerings have in common or why would customers choose one (or even both) of these hybrid cloud options?

They bring the public cloud operation model to the private cloud or edge in form of one or more racks and servers provided as a fully managed service.

AWS Outposts (generally available since December 2019) and Azure Stack Fiji (in development) provide the following:

  • Extension of the public cloud services to the private cloud and edge
  • Consistent infrastructure with consistent operations
  • Local processing of data (e.g., analytics at the data source)
  • Local data residency (governance and security)
  • Low latency access to on-premises systems
  • Local migrations and modernization of applications with local system interdependencies
  • Build, run and manage on-premises applications using existing and familiar services and tools
  • Modernize applications on-prem resp. at the edge
  • Prescriptive infrastructure and vendor managed lifecycle and maintenance (racks and servers)
  • Creation of different physical pools and clusters depending on your compute and storage needs (different form factors)
  • Same licensing and pricing options on-premises (like in the public cloud)

The pretty new AWS Outposts or the future Azure Stack Fiji solution are also called “Local Cloud as a Service” (LCaaS) or “Data Center as a Service” and meant to be consumed and delivered in the on-prem data center or at the edge. It’s about bringing the public cloud to your data center or edge location.

The next phase of cloud transformations is about the “edge” of an enterprise cloud and we know today that private and hybrid cloud strategies are critical for the implementation of IT infrastructure and the operation of it.

If you come from VMware’s standpoint, then it’s not about extending the public cloud to the local data centers. It’s about extending your VMware-based private cloud to the edge or the public cloud.

This article focuses on the local (private) cloud as a service options from VMware, not the public cloud offerings.

In case you would like to know more about VMware’s multi-cloud strategy, which is about running the VMware Cloud Foundation stack on top of a public cloud like AWS, Azure or Google, please check some of my recent posts.

Features and Technologies

Before I describe the different VMware LCaaS offerings based on VMware Cloud Foundation, let me show and explain the different features and technologies my customers ask about when they plan to build a private cloud with public cloud characteristics in mind.

I work with customers from different verticals like

  • finance
  • fast-moving consumer goods
  • manufacturing
  • transportation (travel)

which are hosting IT infrastructure in multiple data centers all over the world including hundreds of smaller locations. My customers belong to different vertical markets, but are looking for the same features and technologies when it comes to edge computing and delivering a managed cloud on-premises. 

Compute and Storage. They are looking for pre-validated and standardized configuration offerings to meet their (application) needs. Most of them describe hardware blueprints with t-shirts sizes (small, medium, large). These different servers or instances provide different options and attributes, which should provide enough CPU, RAM, storage and networking capacity based on their needs. Usually you’ll find terms like “general purpose”, “compute optimized” or “memory optimized” node types or instances.

Networking. Most of my customers look for the possibility to extend their current network (aka elastic or cloud-scale networking) to any other cloud. They prefer a way to use the existing network and security policies and to provide software-defined networking (SDN) services like routing, firewalling and IDS/IPS, load balancing – also known as virtualized network functions (VNF). Service providers are also looking at network function virtualization (NFV), which includes emerging technologies like 5G and IoT. As cloud native or containerized applications become more important, service providers also discuss containerized network functions (CNF).

Services. Applications consist of one or many (micro-)services. All my conversations are application-centric and focus on the different application components. Most of my discussions are about containers, databases and video/data analytics at the edge.

Security. Customers, that are running workloads in the public cloud, are familiar with the shared responsibility model. The difference between public cloud and local cloud as a service offering is the physical security (racks, servers, network transits, data center access etc.).

Scalability and Elasticity. IT providers want to provide the simplicity and agility on-prem as their customers (the business) would expect it from a public cloud provider. Scalability is about a planned level of capacity that can grow or shrink as needed.

Resource Pooling and Sharing. Larger enterprises and service providers are interested in creating dedicated workload domains and resource clusters, but also look for a way to provide infrastructure multi-tenancy.

The challenge for today’s IT teams is, that edge locations are not often well defined. And these IT teams need an efficient way to manage different infrastructure sizes (can range from 2 nodes up to 16 or 24 nodes), for sometimes up to 400 edge locations.

Rethinking Private Clouds

Organizations have two choices when it comes to the deployment of a private cloud extension to the edge. They could continue using the current approach, which includes the design, deployment and operation of their own private cloud. Another pretty new option would be the subscription of a predefined “Data Center as a Service” offering.

Enterprises need to develop and implement a cloud strategy to support the existing workloads, which are still mostly running on VMware vSphere, and build something, which is vendor and cloud-agnostic. Something, that provides a (public) cloud exit strategy at the same time.

If you decide to go for AWS Outposts or the coming Azure Stack Fiji solution, which for sure are great options, how would you migrate or evacuate workloads to another cloud and technology stack?

VMware Cloud on Dell EMC

At VMworld 2019 VMware announced the general availability of VMware Cloud on Dell EMC (VMC on Dell EMC). In 2018 introduced as “Project Dimension”, the idea behind this concept was to deliver a (public) cloud experience to customers on-premises. Give customers the best of two worlds:

The simplicity, flexibility and cost model of the public cloud with the security and control of your private cloud infrastructure.

VMware Cloud on Dell EMC

Initially, Project Dimension was focused primarily on edge use cases and was not optimized for larger data centers.

Note: This has changed with the introduction of the 2nd generation of VMC on Dell EMC in May 2020 to support different density and performance use cases.

VMC on Dell EMC is a VMware-managed service offering with these components:

  • A software-defined data center based von VMware Cloud Foundation (VCF) running on Dell EMC VxRail
    • ESXi, vSAN, NSX, vCenter Server
    • HCX Advanced
  • Dell servers, management & ToR switches, racks, UPS
    • Standby VxRail node for expansion (unlicensed)
    • Option for half or full-height rack
  • Multiple cluster support in a single rack
    • Clusters start with a minimum of 3 nodes (not 4 as you would expect from a regular VCF deployment)
  • VMware SD-WAN (formerly known as VeloCloud) appliances for remote management purposes only at the moment
  • Customer self-service provisioning through cloud.vmware.com
  • Maintenance, patching and upgrades of the SDDC performed by VMware
  • Maintenance, patching and upgrades of the Dell hardware performed by VMware (Dell provides firmware, drivers and BIOS updates)
  • 1- or 3-year term subscription commitment (like with VMC on AWS)

There is no “one size fits all” when it comes to hosting workloads at the edge and in your data centers. VMC on Dell EMC provides also different hardware node types, which should match with your defined t-shirt sizes (blueprints).

VMC on Dell EMC HW Node Types

If we talk about at a small edge location with a maximum of 5 server nodes, you would go for a half-height rack. The full-height rack can host up to 24 nodes (8 clusters). Currently, the largest instance type would be a good match for high density, storage hungry workloads such as VDI deployments, databases or video analytics.

As HCX is part of the offering, you have the right tool and license included to migrate workloads between vSphere-based private and public clouds.

The following is a list of some VMworld 2020 breakout sessions presented by subject matter experts and focused on VMware Cloud on Dell EMC:

HCP1831: Building a successful VDI solution with VMware Cloud on Dell EMC – Andrew Nielsen, Sr. Director, Workload and Technical Marketing, VMware

HCP1802: Extend Hybrid Cloud to the Edge and Data Center with VMware Cloud on Dell EMC – Varun Chhabra, VP Product Marketing, Dell

HCP1834: Second-Generation VMware Cloud on Dell EMC, Explained by Product Experts – Neeraj Patalay, Product Manager, VMware

VMware Cloud Foundation and HPE Synergy with HPE GreenLake

At VMworld 2019 VMware announced that VMware Cloud Foundation will be offered in HPE’s GreenLake program running on HPE Synergy composable infrastructure (Hybrid Cloud as a Service). This gives VMware customers the opportunity to build a fully managed private cloud with the public cloud benefits in an on-premises environment.

HPE’s vision is built on a single platform that can span across multiple clouds and GreenLake brings the cloud consumption model to joint HPE and VMware customers.

Today, this solution is fully supported and sold by HPE. In case you want to know more, have a look at the VMworld 2020 session Simplify IT with HPE GreenLake Cloud Services and VMware from Erik Vogel, Global VP, Customer Experience, HPE GreenLake, Hewlett Packard Enterprise.

VMC on AWS Outposts

If you are an AWS customer and look for a consistent hybrid cloud experience, then you would consider AWS Outposts.

There is also VMware variant of AWS Outposts available for customers, who already run their on-premises workloads on VMware vSphere or in a cloud vSphere-based environment running on top of the AWS global infrastructure (called VMC on AWS).

VMware Cloud on AWS Outposts is a  on-premises as-a-service offering based on VMware Cloud Foundation. It integrates VMware’s software-defined data center software, including vSphere, vSAN and
NSX. Ths Cloud Foundation stack runs on dedicated elastic Amazon EC2 bare-metal infrastructure, delivered on-premises with optimized access to local and remote AWS services.

VMC on AWS Outposts

Key capabilities and use cases:

  • Use familiar VMware tools and skillsets
  • No need to rewrite applications while migrating workloads
  • Direct access to local and native AWS services
  • Service is sold, operated and supported by VMware
  • VMware as the single point of primary contact for support needs, supplemented by AWS for hardware shipping, installation and configuration
  • Host-level HA with automated failover to VMware Cloud on AWS
  • Resilient applications required to work in the event of WAN link downtime
  • Application modernization with access to local and native AWS services
  • 1- or 3-year term subscription commitment
  • 42U AWS Outposts rack, fully assembled and installed by AWS (including ToR switches)
  • Minimum cluster size of 3 nodes (plus 1 dark node)
  • Current cluster maximum of 16 nodes

Currently, VMware is running a VMware Cloud on AWS Outposts Beta program, that lets you try the pre-release software on AWS Outposts infrastructure. An early access program should start in the first half of 2021, which can be considered as a customer paid proof of concept intended for new workloads only (no migrations).

VMware on Azure Stack

To date there are no plans communicated by Microsoft or VMware to make Azure VMware Solution, the vSphere-based cloud offering running on top of Azure, available on-premises on the current or future Azure Stack family.

VMware on Google Anthos

To date there are no plans communicated by Google or VMware to make Google Cloud VMware Engine, the vSphere-based cloud offering running on top of the Google Cloud Platform (GCP), available on-premises.

The only known supported combination of a Google Cloud offering running VMware on-premises is Google Anthos (Google Kubernetes Engine on-prem).

Multi-Cloud Application Portability

Multi-cloud is now the dominant cloud strategy and many of my customers are maintaining a vSphere-based cloud on-premises and use at least two of the big three public clouds (AWS, Azure, Google).

Following a cloud-appropriate approach, customers are inspecting each application and decide which cloud (private or public) would be the best to run this application on. VMware gives customers the option to run the Cloud Foundation technology stack in any cloud, which doesn’t mean, that customers at the same time are not going cloud-native and still add AWS and Azure to the mix.

How can I achieve application portability in a multi-cloud environment when the underlying platform and technology formats differ from each other?

This is a question I hear a lot. Kubernetes is seen as THE container orchestration tool, which at the same time can abstract multiple public clouds and the complexity that comes with them.

A lot of people also believe that Kubernetes is enough to provide application portability and figure out later, that they have to use different Kubernetes APIs and management consoles for every cloud and Kubernetes (e.g., Rancher, Azure, AWS, Google, RedHat OpenShift etc.) flavor they work with.

That’s the moment we have to talk about VMware Tanzu and how it can simplify things for you.

The Tanzu portfolio provides the next generation the building blocks and steps for modernizing your existing workloads while providing capabilities of Kubernetes. Additionally, Tanzu also has broad support for containerization across the entire application lifecycle.

Tanzu gives you the possibility to build, run, manage, connect and protect applications and to achieve multi-cloud application portability with a consistent platform over any cloud – the so-called “Kubernetes grid”.

Note: I’m not talking about the product “Tanzu Kubernetes Grid” here!

I’m talking about the philosophy to put a virtual application service layer over your multi-cloud architecture, which provides a consistent application platform.

Tanzu Mission Control is a product under the Tanzu umbrella that provides central management and governance of containers and clusters across data centers, public clouds, and edge.

Conclusion

Enterprises must be able to extend the value of their cloud investments to the edge of the organization.

The edge is just one piece of a bigger picture and customers are looking for a hybrid cloud approach in a multi-cloud world.

Solutions like VMware Cloud on Dell EMC or running VCF on HPE Synergy with HPE Greenlake are only the first steps towards innovation in the private cloud and to bring the cost and operation model from the public cloud to the enterprises on-premises.

IT organizations are rather looking for ways to consume services in the future and care less about building the infrastructure or services by themselves.

The two most important differentiators for selecting an as-a-service infrastructure solution provider will be the provider’s ability to enable easy/consistent connectivity and the provider’s established software partner portfolio.

In cases where IT organizations want to host a self-managed data center or local cloud, you can expect, that VMware is going to provide a new and appropriate licensing model for it.

Multi-Tenancy on VMware Cloud Foundation with vRealize Automation and Cloud Director

Multi-Tenancy on VMware Cloud Foundation with vRealize Automation and Cloud Director

In my article VMware Cloud Foundation And The Cloud Management Platform Simply Explained I wrote about why customers need a VMware Cloud Foundation technology stack and what a VMware cloud management platform is.

One of the reasons and one of the essential characteristics of a cloud computing model I mentioned is resource pooling.

By the National Institute of Standards and Technology (NIST) resource pooling is defined with the following words:

The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer demand.
There is a sense of location independence in that the customer generally has no
control or knowledge over the exact location of the provided resources but may be
able to specify location at a higher level of abstraction (e.g., country, state, or
data center).

This time I would like to focus on multi-tenancy and how you can achieve that on top of VMware Cloud Foundation (VCF) with Cloud Director (formerly known as vCloud Director) and vRealize Automation, which both could be part of a VMware cloud management platform (CMP).

Multi-Tenancy

There are many understandings around about multi-tenancy and different people have different definitions for it.

If we start from the top of an IT infrastructure, we will have application or software multi-tenancy with a single instance of an application serving multiple tenants. And in the past even running on the same virtual or physical server. In this case the multi-tenancy feature is built into the software, which is commonly accessed by a group of users with specific permissions. Each tenant gets a dedicated or isolated share of this application instance.

Coming from the bottom of the data center, multi-tenancy describes the isolation of resources (compute, storage) and networks to deliver applications. The best example here are (cloud) services providers.

Their goal is to create and provide virtual data centers (VDC) or a virtual private cloud (VPC) on top of the same physical data center infrastructure – for different tenants aka customers. Normally, the right VMware solution for this requirement and service providers would be Cloud Director, but this is maybe not completely true anymore with the release of vRealize Automation 8.x. 

To make it easier for all of us, I’ll call Cloud Director and vCloud Director “vCD” from now on.

VMware Cloud Director (formerly vCloud Director)

Cloud Director is a product exclusively for cloud service providers via the VMware Cloud Provider Program (VCPP). Originally released in 2010, it enables service providers (SPs) to provision SDDC (Software-Defined Data Center) services as complete virtual data centers. vCD also keeps resources from different tenants isolated from each other.

Within vCD a unit of tenancy is called Organization VDC (OrgVDC). It is defined as a set of dedicated compute (CPU, RAM), storage and network resources. A tenant can be bound to a single OrgVDC or can be composed of multiple Organization VDCs. This is typically known as Infrastructure as a Service (IaaS).

A provider virtual data center (PVDC) is a grouping of compute, storage, and network resources from a single vCenter Server instance. Multiple organizations/tenants can share provider virtual data center resources.

Cloud Director Resource Abstraction

A lot of customers and VCPP partners have now started to offer their cloud services (IaaS, PaaS, SaaS etc.) based on VMware Cloud Foundation. For private and hybrid cloud scenarios, but also in the public cloud as a managed cloud service (VMware Cloud on AWS, Azure VMware Solution, Google Cloud VMware Engine, Alibaba Cloud VMware Solution and more).

Important: I assume that you are familiar with VCF, its core components (ESXi, vSAN, NSX, SDDC Manager) and architecture models (standard as the preferred).

Cloud Director components are currently not part of the VCF lifecycle automation, but it is a roadmap item!

Cloud Director Resource Hosting Models

vCD offers multiple hosting models:

  • In the shared hosting model, multiple tenant workloads run all together on the same
    resource groups without any performance assurance
  • In the reserved hosting model, performance of workloads is assured by resource
    reservation.
  • In the physical hosting model, hardware is dedicated to a single tenant and performance
    is assured by the allocated hardware

Tenant Using Shared Hosting on VCF Workload Domain

In this use case a tenant is using shared hosting backed by a VMware Cloud Foundation workload domain. A workload domain, which is mapped to a provider VDC.

vCD VCF Shared

Tenant Using Shared Hosting and Reserved Hosting on Multiple VCF Workload Domains

This use case describes the example of customer using shared and reserved hosting backed by multiple VCD workload domains. Here each cluster has a single resource pool mapped to a single PVDC.

vCD VCF Shared Reserved

Tenant Using Physical Hosting and Central Point of Management (CPOM)

The last example shows a single customer using physical hosting. You will notice that there is also a vSphere with
Kubernetes workload domain. VMware Cloud Foundation automates the installation of vSphere with Kubernetes (Tanzu) which makes it incredibly easy to deploy and manage.

You can see that there is an “SDDC” box on top of the Kubernetes Cluster vCenter, which is attached to
the “SDDC Proxy” entity. vCD can act as an HTTP/S proxy server between tenants and the
underlying vSphere environment in VMware Cloud Foundation. An SDDC proxy is an
access point to a component from an SDDC, for example, a vCenter Server instance, an ESXi host, or
an NSX Manager instance.

The vCD becomes the central point of management (CPOM) in this case and the customer gets a complete dedicated SDDC with vCenter access.

vCD VCF Physical CPOM

Note: Since vCD 9.7 it is possible to present for example a vCenter Server instance securely to a tenant’s organization using the Cloud Director user interface. This is how you could build your own VMC-on-AWS-like cloud offering!

Cloud Director CPOM

All 3 Tenants Together

Finally, we put it all together. In the first use case we can see that different customers are sharing resources from a
single PVDC. We can also see that resources from a single vCenter can be split across different provider virtual datacenters and that we can mix and match multi-tenants workload domains and workload domains offering dedicated private cloud all together.

vCD VCF All Together

Cloud Director Service and VMware Cloud on AWS

If you don’t want to extend or operate your own data center or cloud infrastructure anymore and provide a managed service to multiple customer, there are still options for you available backed by VMware Cloud Foundation as well.

Since October 2020 you have Cloud Director Service globally available, which delivers multi-tenancy to VMware Cloud on AWS for managed service providers (MSP).

VMware sees not only new, but also existing VCPP partners moving towards a mixed-asset portfolio, where their cloud management platform consists of a VCPP and MSP (VMware SaaS offerings) contract. This allows them for example to run vCD on-premises for their current customers and the onboarding of new tenants would happen in the public cloud with CDS and VMC on AWS.

vCD CDS Mixed Mode

Enterprise Multi-Tenancy with vRealize Automation

With the release of vRealize Automation 8.1 (vRA) VMware offered support for dedicated infrastructure multi-tenancy, created and managed through vRealize Suite Lifecycle Manager. This means vRealize Automation enables customers or IT providers to set up multiple tenants or organizations within each deployment.

Providers can set up multiple tenant organizations and allocate infrastructure. Each tenant manages its own projects (team structures), resources and deployments.

Enabling tenancy creates a new Provider (default) organization. The Provider Admin will create new tenants, add tenant admins, setup directory synchronization, and add users. Tenant admins can also control directory synchronization for their tenant and will grant users access to services within their tenant. Additionally, tenant admins will configure Policies, Governance, Cloud Zones, Profiles, access to content and provisioned resources; within their tenant. A single shared SDDC or separate SDDCs can be used among tenants depending on available resources.

vRealize Automation 8.1 Multi-Tenancy

With vRealize Automation 8.2, provider administrators got the ability to share infrastructure by creating and assigning Virtual Private Zones (VPZ) to tenant organizations.

Think of VPZs as a kind of container of infrastructure capacity and services which can be defined and allocated to a Tenant. You can add unique or shared cloud accounts, with associated compute, flavors, images, storage, networking, and tags to each VPZ. Each component offers the same configuration options you would see for a standalone configuration.

vRealize Automation 8.2 Multi-Tenancy

vRealize Automation and VMware Cloud Foundation

With the pretty new multi-tenancy and VPZ capability a new consumption model on top of VCF can be built. You (provider) would map the Cloud Zones (compute resources on vSphere (or AWS for example)) to a VCF workload domain.

The provider sets these cloud zones up for their customers and provides dedicated or shared infrastructure backed by Cloud Foundation workload domains.

This combination would allow you to build an enterprise VPC construct (like AWS for example), a logically isolated section of your provider cloud.

vRealize Automation and VMware Cloud Foundation

SDDC Manager Integration and VMware Cloud Foundation (VCF) Cloud Account

Since the vRA 8.2 release customers are also able to configure a SDDC Manager integration and on-board workload domains as VMware Cloud Foundation cloud accounts into the VMware Cloud Assembly service.

VMware Cloud Director or vRealize Automation?

You wonder if vRealize Automation could replace existing vCD installations? Or if both cloud management platforms can do the same?

I can assure you, that you can provide a self-service provisioning experience with both solutions and that you can provide any technology or cloud service “as a service”. Both have in common to be backed by Cloud Foundation, have some form of integration (vRA) and can be built by a VMware Validated Design (VVD).

vCD is known to be a service provider solution, where vRA is more common in enterprise environments. VMware has VCPP partners, that use Cloud Director for their external customers and vRealize Automation for their internal IT and customers.

If you are looking for a “cloud broker” and Infrastructure as Code (IaC), because you also want to provision workloads on AWS, Azure or GCP as well, then vRealize Automation is the better solution since vCD doesn’t offer this deep integration and these deployment options yet.

Depending on your multi-tenant needs and if you for example only have chosen vCD in the past, because of the OrgVDC and resource pooling feature, vRealize Automation would be enough and could replace vCD in this case.

It is also very important to understand how your current customer onboarding process and operational model look like:

  • How do you want to create a new tenant? 
  • How do you want to onboard/migrate existing customer workloads to your provider infrastructure?
  • Do you need versioning of deployments or templates?
  • Do customers require access to the virtual infrastructure (e.g. vCenter or OrgVDC) or do you just provide SaaS or PaaS?
  • Do customers need a VPN or hybrid cloud extension into your provider cloud?
  • How would you onboard non-vSphere customers (Hyper-V, KVM) to your vSphere-based cloud?
  • Does your customer rely on other clouds like AWS or Azure?
  • How do you do billing for your vSphere-based cloud or multi-cloud environment?
  • What is your Kubernetes/container strategy?
  • And 100 other things 😉

There are so many factors and criteria to talk about, which would influence such a decision. There is no right or wrong answer to the question, if it should be VMware Cloud Director or vRealize Automation. Use what makes sense.

Which could also be a combination of both.